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Abstract

In this work we give a first tractability analysis of Com-
pressed Path Databases, space efficient oracles used to very
quickly identify the first arc on a shortest path. We study
the complexity of computing an optimal compressed path
database for general directed and undirected graphs. We find
that in both cases the problem is NP-complete. We also show
that, for graphs which can be decomposed along articula-
tion points, the problem can be decomposed into indepen-
dent parts, with a corresponding reduction in its level of dif-
ficulty. In particular, this leads to simple and tractable algo-
rithms which yield optimal compression results for trees.

Introduction
A Compressed Path Database (CPD) is an index-based data-
structure for graphs that is used to very quickly answer first-
move queries. Each such query takes as input a pair of nodes
from the graph, and asks for the first arc on a shortest path
from s to t. CPDs have successfully been applied in a num-
ber of contexts important to AI. For instance, Copa, a CPD-
based pathfinding algorithm, was one of the joint winners
at the 2012 Grid-based Path Planning Competition (Botea
2012). A related algorithm, MtsCopa, is a fast method for
moving target search over known and partially known ter-
rain (Botea et al. 2013; Baier et al. 2014).

A trivial CPD consists of a square matrix m with dimen-
sions |V |×|V |. The matrix m, constructed during a precom-
putation step, stores in each cell, e.g. m[s, t], the identity of
a first arc on a shortest st-path. By convention we say that
rows of m correspond to fixed source nodes and the columns
to fixed target nodes. This is optimal in terms of query time
but the O(|V |2) space consumption quickly becomes pro-
hibitive for larger graphs. The challenge is to design a com-
pact representation of m that trades a small increase in query
times for a large decrease in space consumption.

A number of different matrix compression techniques
have been suggested for this purpose (Sankaranarayanan,
Alborzi, and Samet 2005; Botea 2011; Botea and Harabor
2013). In each case the objective is to conserve space by
grouping together entries of m which all share a common
source node and which all store the same first-arc informa-
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tion. The latest work of this type is SRC (Strasser, Hara-
bor, and Botea 2014); a compression scheme based on Run-
Length Encoding which is not only highly space competitive
but also the current state of the art in terms of query running
time. The idea behind SRC is simple: compute the first-
move matrix m, reorder its columns in a “good” way and
then apply run-length encoding to each row. An intuitive
definition of “good” in this case is a column ordering that
assigns adjacent IDs to elements having the same first-move
data – so they can be encoded together within the same run.

Experiments by Strasser, Harabor, and Botea (2014) em-
ploy heuristic methods for column ordering. They have
shown that “good” orderings can be computed efficiently
in practice. The ideal case for SRC is to create an RLE-
compressed path database using an optimal column order-
ing. Several optimality criteria can be considered, such as
minimizing: the size of the compressed matrix; the expected
response time per query, when answering a query involves a
binary search through a compressed matrix row; or the max-
imum response time per query. Toy examples demonstrate
that these types of optimization are not equivalent to each
other. In this work we focus on minimizing the size of the
compressed matrix, since experiments have shown that the
size is a substantially more important bottleneck than the re-
sponse time in practice (Strasser, Harabor, and Botea 2014).

Related (Kou 1977; Oswald and Reinelt 2009) and
weaker, less specific (Mohapatra 2009) results on RLE-
based matrix compression are available in the literature.
However, as known, the NP-hardness of a class of problems
does not necessarily imply the NP-hardness of a subset of
the class. Thus, despite previous related results (Mohapa-
tra 2009), it has been an open question whether the optimal
RLE-compression of a first-move matrix computed from an
input graph is tractable. Focusing on this, we prove general
intractability results, and also identify islands of tractability.

We formally define and study optimal RLE-compression
of first-move matrices produced from input graphs. We con-
sider the case of directed input graphs and the case of undi-
rected weighted input graphs. We show that both versions
are NP-complete. Focusing on such distinct types of graphs,
each result brings something new compared to the other. We
also show that, for graphs which can be decomposed along
articulation points, the problem can be decomposed into in-
dependent subproblems. If optimal orderings are available
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for the subproblems, a global optimal ordering can easily be
obtained. In particular, a depth-first preorder is optimal on
trees, and the general ordering problem is fixed-parameter
tractable in the size of the largest 2-connected component.

Preliminaries
Run length encoding (RLE) compresses a string of sym-
bols by representing more compactly substrings, called runs,
consisting of repetitions of the same sysmbol. For instance,
string aabbbaaa has three runs, namely aa, bbb, and aaa. A
run is replaced with two numbers, called the start and the
value of the run. The start is the index of the first element in
the substring, whereas the value is the symbol contained in
the substring. In our example, the first run aa has the start
0 and the value a. Run bbb has the start 2 and the value b,
whereas the last run has the start 5 and the value a.1

When the first and the last run have the same value, there
is no need to encode both. The first run can easily be recon-
structed in constant time. First, decide whether the first run
has been removed or not, checking if the first run among the
preserved ones has the start equal to 0. Secondly, if needed,
reconstruct the first run, using 0 as a start position and a
value equal to the value of the last encoded run.
Definition 1. Given an ordered sequence of elements
(string), we say that two positions are: adjacent if they are
next to each other; cyclic-adjacent if they are adjacent or
one is the first and the other is the last position in the order-
ing; separated otherwise.

Let σ be an ordered sequence of elements (string) over a
dictionary Σ. Given a symbol α ∈ Σ, let an α-run be an
RLE run containing symbol α. Nα(σ) is the total number
of occurrences of symbol α in σ. Rsα(σ), the number of se-
quential α-runs, is the total of number of α-runs under the
condition that, if σ has α-runs both at the beginning and at
the end, these are counted separately. We call these sequen-
tial α-runs. Rcα(σ), the number of cyclic α-runs, is similar
except that, if σ has α-runs both at the beginning and at the
end, these are counted as one. We call these cyclic α-runs.
Rc∗(σ) is the total number of cyclic RLE runs, and Rs∗(σ) is
the total number of sequential RLE runs. In this paper, we
assume that first-move compression uses cyclic runs.

First-Move Compression for Directed Graphs
Recall that the ordering of the columns of a first-move ma-
trix m affects the number of RLE runs in the matrix. In
this section we show that obtaining an optimal ordering is
intractable in general when the input graph is directed.
Definition 2. The FMComp-d (First Move Compression–
Directed) problem:
Input: A directed graph G = (V,A); a matrix m of size
|V | × |V | where each cell m[i, j] encodes the first move on
an optimal path from node i to node j; an integer k.
Question: Is there an ordering of the columns of m such
that, if we apply RLE on each row, the total number of cyclic
RLE runs summed up for all rows is k?

1Alternative encodings exist, such as the value followed by the
run length. E.g., a, 2; b, 3; a, 3 in the example.
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Figure 1: Left: sample graph GH . Right: GF built from
GH . In GF , x, y, w, z are type-n nodes; nij have type e.

Theorem 1. The FMComp-d problem is NP-complete.

Proof. It is easy to see that the problem belongs to NP, as a
solution can be guessed and verified in polynomial time.

The NP-hardness is shown as a reduction from the Hamil-
tonian Path Problem (HPP) in an undirected graph. Let
GH = (VH , AH) be an arbitrary undirected graph, and de-
fine n = |VH | and e = |AH |. Starting from GH , we build
an instance of the FMComp-d problem. According to Def-
inition 2, such an instance includes a directed graph, which
we call GF , the first-move matrix m of GF , and a number.
GF = (VF , AF ) is defined as follows. For each node u ∈

VH , define a node in VF . We call these nodes in VF type-
n nodes, to indicate they are created from original nodes in
VH . For each edge (u, v) ∈ AH , define a new node nuv ∈
VF (type-e nodes). For each new node nuv , define two edges
in AF , one from nuv to u and one from nuv and v. There
are no other edges in AF . See Figure 1 for an example.

Table 1 shows the first-move matrix of the running exam-
ple. Given a type-n node u, all other nodes are unreachable
from u in the graphGF . Thus, the matrix row corresponding
to u has only one symbol, which we chose to be symbol 2,
and which denotes that a node is not reachable.2 Such rows
have one RLE run each, regardless of the node ordering.

A matrix row corresponding to a type-e node nuv has
three distinct symbols in total: one symbol for the edge to
node u, another symbol for the edge to node v, and the “non-
reachable” symbol 2 for every other node. Without any gen-
erality loss, we use symbol 0 for the edge to u, and symbol
1 for the edge to v. It is easy to see that, when nodes u and
v are cyclic-adjacent in a given ordering, the nuv’s row has
3 RLE runs. When u and v are separated, the row will have
4 RLE runs. See Table 1 for a few sample orderings.

We claim that HPP has a solution iff FMComp-d has a
solution with 4e + 1 RLE runs. Let vi1 , vi2 . . . , vin be a
solution of HPP (i.e., a Hamiltonian path in GH ), and let
P ⊆ AH be the set of all edges included in this solution. We
show that the node ordering in VF starting with vi1 , . . . , vin ,
followed by the type-e nodes in an arbitrary order, will result

2A cell m[u, u] can encode an arbitrary value, since there is
no need to travel from a node to itself. Given a column ordering,
m[u, u] is assigned the same value as (any) one of u’s neighbors in
the ordering, so that m[u, u] has no impact on the number of runs.
In the example at hand, m[u, u] = 2 for all u.
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Row node String on row RLE runs
x 2222222 1
y 2222222 1
w 2222222 1
z 2222222 1
nxy 0122222 3
nxw 0212222 4
nwz 2201222 3

Table 1: First-move matrix for the running exam-
ple. Both rows and columns follow the node ordering
x, y, w, z, nxy, nxw, nwz .

in 4e+ 1 = 3(n− 1) + 4(e− n+ 1) + n runs, with 3n− 3
runs in total for the type-e rows3 corresponding to edges in
P ; 4(e− n+ 1) runs in total for the remaining type-e rows;
and n runs in total for the type-n rows.

Indeed, for each edge (u, v) ∈ P , the type-e row in m
corresponding to node nuv ∈ VF will have 3 RLE runs,
since u and v are adjacent in the ordering. There are n − 1
edges in a Hamiltonian path, with a total number of RLE
runs of 3(n− 1) for all these rows.

For an edge (u, v) /∈ P , the two nodes are separated and
therefore the corresponding matrix row will have 4 runs.
This sums up to 4(e − n + 1) RLE runs for all rows cor-
responding to edges not included in the Hamiltonian path.

Conversely, consider a node ordering that creates 4e+1 =
3(n − 1) + 4(e − n + 1) + n RLE runs in total. We show
that the ordering has all type-n nodes as a contiguous block,4
and that their ordering is a Hamiltonian path in GH . This is
equivalent to saying that there exist n − 1 pairs of type-n
nodes u and v such that u and v are cyclic-adjacent in the
ordering, and (u, v) ∈ AH .

Here is a proof by contradiction. Assume there are only
p < n−1 pairs of type-n nodes u and v such that u and v are
cyclic-adjacent in the ordering, and (u, v) is an edge in AH .
For each of these p pairs, the row corresponding to the type-e
node nuv will have 3 RLE runs. The remaining e − p type-
e rows will be 4 RLE runs each. As mentioned earlier, the
type-n rows have n runs in total, regardless of the ordering.
Thus, the total number of RLE runs is 3p+ 4(e− p) + n =
4e−p+n > 4e− (n−1)+n = 4e+1. Contradiction.

Compression for Undirected Weighted Graphs
We turn our attention to undirected weighted graphs, show-
ing that computing an optimal ordering is NP-complete.

Definition 3. The FMComp-uw problem (First Move
Compression–Undirected, Weighted) is defined as follows.
Input: An undirected weighted graph G = (V,A); a matrix
m of size |V |× |V | where a cell m[i, j] stores the first move
on an optimal path from node i to node j; an integer k.
Question: Is there an ordering of m’s columns such that, if

3We say that a row has a type-n (or type-e) iff its associated
node has that type.

4Here, the notion of a contiguous block allows the case when
part of the block is at the end of the sequence, and the other part is
at the beginning, as if the sequence were cyclic.

Relation between u and v String on row r Nr. 1-runs
Adjacent 00110000 1
Non-adjacent 10000001 2
Non-adjacent 01001000 2

Table 2: Sample orderings and their sequential 1-runs.

we apply run length encoding (RLE) on each row, the total
number of cyclic RLE runs in the matrix is at most k?

As a stepping stone in proving the NP-hardness of
FMComp-uw, we introduce a problem that we call Sim-
Mini1Runs (Definition 4), and prove its NP-completeness.
SimMini1Runs is inspired by the work of Oswald and
Reinelt (2009), who have studied the complexity of a prob-
lem involving the so-called k-augmented simultaneous con-
secutive ones property (C1Sk) for a 0/1 matrix (i.e., a matrix
with only two symbols, 0 and 1). By definition, a 0/1 ma-
trix has the C1Sk property if, after replacing at most k 1s
with 0s, the columns and the rows of the matrix can be or-
dered so that, for each row and for each column, all 1s on
that row or column come as one contiguous block. Oswald
and Reinelt (2009) have proven that checking whether a 0/1
matrix has theC1Sk property is NP-complete. Our proof for
SimMini1Runs is related, as we point out later in the proof.

Given a 0/1 matrix o, an ordering of its columns, and an
ordering of its rows, let the global sequential 1-runs count
Gs1(o) be the number of sequential 1-runs summed over all
rows and all columns. That is, Gs1(o) =

∑
σ R

s
1(σ), where

σ is iterated through o’s rows and columns. For instance,
Gs1(o) = 6 for the matrix o shown in Figure 2.

Definition 4. The Simultaneous Mini 1-Runs (Sim-
Mini1Runs) problem is defined as follows.
Input: A 0/1 matrix o so that every row and column contain
at least one value of 1; an integer k.
Question: Is there an ordering of the columns, and an or-
dering of the rows, so that Gs1(o) ≤ k?

Theorem 2. SimiMini1Runs is NP-complete.

Proof. The membership to NP is straightforward. The hard-
ness proof uses a reduction from the Hamiltonian Path Prob-
lem (HPP) in an undirected graph. Let G = (V,A) be
an undirected graph, without duplicate edges, and define
n = |V | and e = |A|. We define a 0/1 matrix m with
e rows and n columns. Let r be the row corresponding to
an edge (u, v), and let cu and cv be the columns associated
with nodes u and v. Then m[r, cv] = m[r, cu] = 1 and
m[r, c] = 0 for all other columns. Notice that m has at least
a value of 1 on every row and column.

Let r be the matrix row corresponding to an edge (u, v).
It is easy to see that, when a given ordering of the columns
(nodes) makes the two nodes u and v adjacent, the number
of sequential RLE 1-runs5 for row r is 1. If the nodes are
not adjacent, the number of sequential RLE 1-runs for row r
is 2. See a few sample orderings in Table 2.

We claim the HPP has a solution iff SimMini1Runs has a
solution with t = 3e − n + 2 RLE 1-runs. Let vi1 , . . . , vin

5All runs used in this proof are sequential.
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o =

[ c1 c2 c3

r1 0 1 1
r2 1 0 1

]

Figure 2: Running example 0/1 matrix o. Rows are labelled
as ri, whereas cj represent column labels.

be a solution of HPP (i.e., a Hamiltonian path), and let P be
the set of all edges included in this solution.

In every row corresponding to an edge not contained in P ,
switch one of its two 1-entries to 0. Then, order the columns
with respect to the sequence of the nodes in the Hamiltonian
path and rearrange the rows in lexicographical order.

The construction of the matrix, the trick of converting
some of the 1s into 0s, and the ordering of the rows and
columns are reused from Oswald and Reinelt’s proof for the
hardness of deciding whether a 0/1 matrix has the C1Sk
property (Oswald and Reinelt 2009). The rest of the proof,
coming below, is significantly different.

Now, restore the previously replaced 1s. Since G has no
duplicate edges, each of the e− n+ 1 1s that were replaced
and restored have no adjacent 1s in the matrix. As such,
each of them counts as two 1-runs, one horizontal and one
vertical. This sums up to a total of 2(e − n + 1) 1-runs
corresponding to the 1s replaced and restored. In addition,
each row and column has one more 1-run. It follows that the
matrix has 3e− n+ 2 1-runs.

Conversely, consider a row and column ordering that cre-
ates 3e−n+2 RLE 1-runs in total. We show that the matrix
has at least e+1 vertical 1-runs, regardless of the row order-
ing. Consider the rows, in order, starting from the top. The
first row introduces exactly 2 vertical 1-runs, one for each
column where it contains a value of 1. Each subsequent row
introduces at least one more vertical 1-run. Otherwise, the
new row would be identical to the previous one, which con-
tradicts the fact that the graph has no duplicate edges.

As there are at least e + 1 vertical 1-runs, the number
of horizontal 1-runs will be at most (3e − n + 2) − (e +
1) = 2e − n + 1. We show that the column ordering is
a Hamiltonian path. Assuming the contrary, there are only
p < n − 1 edges such that their nodes are adjacent in the
ordering. It follows that the number of horizontal 1-runs is
p+ 2(e− p) = 2e− p > 2e− n+ 1. Contradiction.

Theorem 3. FMComp-uw is NP-complete.

Proof. The NP-hardness is shown with a reduction from
SimMini1Runs. Consider an arbitrary SimMini1Runs in-
stance o with m rows and n columns. Figure 2 shows a
running example. We build an undirected weighted graph
G = (V,A) as follows. V has 3 types of nodes, to a total of
m + n + 1 nodes. Each column of o generates one node in
V . We call these c-nodes. Each row generates one node as
well (r-nodes). There is an extra node p called the hub node.

One r-node ri and one c-node cj are connected through a
unit-cost edge iff o[ri, cj ] = 1. In addition, there is an edge
with a weight of 0.75 between p and every other node. No
other edges exist in graph G. See Figure 3 for an example.

r1

c1 c2

r2

c3

p

Figure 3: Graph in the running example. Dashed edges have
a weight of .75, whereas solid lines are unit-cost edges.

m =



r1 r2 c1 c2 c3 p

r1 0 0 0 1 2 0
r2 0 0 1 0 2 0
c1 0 1 0 0 0 0
c2 1 0 0 0 0 0
c3 1 2 0 0 0 0
p 1 2 3 4 5 5



Figure 4: The first-move matrix for the running example.
Without any generality loss, 0 is the move towards p. The
incident edges of a given node are counted starting from 1.

Let m be the first-move matrix of G. The row of p has a
fixed number of runs, namely m + n,6 regardless of the or-
dering of m’s columns. Let v be a c-node or r-node. Apart
from v’s adjacent nodes, all other nodes are reached through
a shortest path whose first move is the edge (v, p). The ma-
trix m for the running example is shown in Figure 4.

Let T1 be the total number of occurrences of symbol 1 in
matrix o. We claim that there is an ordering of o’s rows and
columns that results in at most k sequential 1-runs (summed
up for all rows and all columns) iff there is an ordering of the
columns of m resulting in at most k + 2T1 + m + n cyclic
RLE runs in total (summed up for all rows). Thus all rows
of m, except for p’s row, have at most k + 2T1 runs in total.

Let ri1 , . . . rim and cj1 , . . . cjn be the row and column
orderings in o that result in at most k sequential RLE
runs on all rows and columns. We show that the order-
ing ri1 , . . . rim , cj1 , . . . cjn , p of m’s columns generates at
most k + 2T1 + m + n cyclic runs. Clearly, for every
row or column σ in o, there is a corresponding row σ′ in
m. According to the steps explained earlier and illustrated
in Figures 2 and 4, σ′ is obtained from σ as follows. All
original 0s are preserved. All original 1s are replaced with
distinct consecutive integers starting from 1. In addition,
σ′ is padded with 0s at one or both of its ends. Since σ′
has 0s at one or both its ends, Rs1(σ) = Rc0(σ′). It fol-
lows that Rc∗(σ

′) = Rc0(σ′) + N1(σ) = Rs1(σ) + N1(σ).
Summing up Rc∗(σ

′) over all rows σ′ of m, except for p’s
row, we obtain

∑
σ′∈ρ(m)\{p}R

c
∗(σ
′) =

∑
σ∈β(o)R

s
1(σ) +∑

σ∈β(o)N1(σ) ≤ k+ 2T1, where ρ denotes the set of rows
of a matrix, κ is the set of columns, and β = ρ∪κ. It follows

6Recall that m[p, p] is assigned the value of one of its neighbors
in the ordering, so that m[p, p] does not impact the number of runs.
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that m’s rows have at most k + 2T1 + m + n cyclic RLE
runs in total (that is, summed up for all rows).

Conversely, assume an ordering of m’s columns with at
most k + 2T1 + m + n cyclic RLE runs in total (for all
rows). This means that summing up the runs of all rows
of m, except for node p’s row, results in at most k + 2T1

runs. As there are exactly 2T1 distinct runs different from
0-runs, it follows that there are at most k 0-runs in total:∑
σ′∈ρ(m)\{p}R

c
0(σ′) ≤ k.

Let ri1 , . . . rim , cj1 , . . . cjn , p be a re-arragement of m’s
columns so that: all r-nodes come in one contiguous block,
and their relative ordering is preserved; all c-nodes are one
contiguous block, and their relative ordering is preserved.
Since G restricted to c-nodes and r-nodes is bi-partite, this
rearrangement cannot possibly increase the number of RLE
runs. (If anything, it could eliminate some 0-runs).

We order o’s columns as cj1 , . . . cjn , and o’s rows as
ri1 , . . . rim . With these orderings, the relation between a
row or column σ of o and its corresponding row σ′ in m
is as follows. All non-zero values in σ′ are converted into
1s in σ. Some of σ′ 0s from one or both of its ends are cut
away in σ. Since σ′ contains some 0s at one or both ends,
Rs1(σ) = Rc0(σ′). It follows that

∑
σ∈ρ(o)∪κ(o)R

s
1(σ) =∑

σ′∈ρ(m)\{p}R
c
0(σ′) ≤ k.

Fighting Complexity with Decomposition
So far all our results have been negative. We have shown
that computing an optimal order on a large class of graphs
is NP-hard. However, experiments from (Strasser, Harabor,
and Botea 2014) show that on realistic graphs it is possible
to construct good orders quickly. Two heuristics were pro-
posed: use a depth-first preorder or recursively decompose
the graph along edge cuts. We investigate these techniques
in a more formal setting. We show that a depth-first preorder
is optimal on trees and we show that graphs can be decom-
posed along articulation points (which are related to cuts of
size 1). Further we are able to construct optimal orders ef-
ficiently on a broader class of graphs than trees: We show
that the problem is fixed-parameter tractable in the size of
the largest two-connected component of the graph.

Being able to decompose graphs along articulation points
is useful on real-world road networks. These graphs tend
to have a large two-connected component with many small
trees attached. For example the Europe graph made avail-
able during the 9th DIMACS challenge (Demetrescu, Gold-
berg, and Johnson 2009) has about 18M nodes in total
of which only 11.8M are within the largest two-connected
component. Our result allows us to position 6.2M nodes in
the order fast and optimally using only local information.

We focus on graphs G with an articulation point x, i.e.,
a node x whose removal decomposes the graph into disjoint
connected subgraphs {x}, G1 . . . Gn. We call an x-block
ordering any node ordering where x comes first, the nodes of
G1 come next as a contiguous block, and so on all the way to
block Gn. Let o|G′ be the projection of the node ordering o
to a subsetG′ ofG. We say that order o is a rotation of order
o′ when two sub-orders α and β exist such that o′ = α, β
and o = β, α. Let Γi be a shorter notation for Gi ∪ {x}.

In this section we assume that cyclic runs are used and that
every cell m[s, s] gets its own distinct symbol, called the s-
singleton. This makes the proofs easier and clearly does not
have a significant impact on the number of runs.

Lemma 1. Let x be an articulation point of a graph G. Ev-
ery node order π can be rearranged into an x-block ordering
π′ without increasing the number of runs on any row.

Proof. For every subgraph Gi we construct a node order πi
as following: Consider the sub-order o|Γi that only contains
the nodes of Γi = Gi ∪ {x}. We then rotate this sub-order
such that x comes first. The resulting sub-order is projected
onto Gi (in other words, remove node x from the ordering),
obtaining πi. The desired global order o′ is then constructed
as: o′ = x, π1, . . . , πn. It is clear by construction that the
nodes in every subgraph are consecutive. It remains to show
that the number of runs per row does not grow.

Denote by s a source node. We distinguish two cases:
(a) s ∈ Gi for some i, and (b) s = x. The key insight in
(a) is that all first-moves for shortest paths with target nodes
outside of Gi have the same first move as the shortest path
towards x. One can check that the reordering of nodes from
o to o′ has the following impact on the first-move row of s.
We temporarily remove all first moves towards vertices out-
side of Γi, and rotate the row such that x comes first. Nei-
ther removing elements nor rotating elements can increase
the number of runs. We then re-insert the first-moves to-
wards the nodes outside of Γi, in such a way that the newly
re-inserted values are cyclic-adjacent to a run with the same
value, namely the run that includes the move towards x. This
only increases the size of that run, but it does not create a
new run. This concludes case (a).

For case (b), the key insight is that the first-moves from x
to nodes in two different subgraphs must be different. Thus,
no run can contain first-moves to multiple subgraphsGi. Us-
ing this we can show that going from o to o′ only rearranges
the runs but does not cut any run into two runs. (However, it
is possible that runs with the same value are arranged con-
secutively thus reducing the number of runs.)

Re-arranging the row r of x from o onto o′ is equivalent to
the following steps. We construct for every i a subrow ri that
only contains the nodes in Γi. Note that every run in r is in
a single ri, with the exception of the x-singleton run from x
to x, which occurs in each ri. Next we rotate all ri, such that
x comes first, to obtain r′i. This places the x-singleton at the
front and, as singletons can not wrap around, no r′i can con-
tain a cyclic run. To get a re-arranged row r′ corresponding
to o′ we concatenate the x-singleton, followed by r′1 (with-
out x),. . ., followed by r′n (without x). As the construction
never needed to split runs, it is clear that r′ contains no more
non-x-singleton runs than r. Both r and r′ contain exactly
one x-singleton, which concludes the proof.

Given a graph G, a node ordering o and a row subset S,
let N(o,G, S) be the number of runs restricted to subset S.
Clearly, N(o,G,G) is the total number of runs.

Lemma 2. Given any x-block ordering o, we have that:

1. N(o,G,Gi) = N(o|Γi
,Γi, Gi); and

1104



2. N(o,G, {x}) = 1− n+
∑
iN(o|Γi ,Γi, {x}); and

3. N(o,G,G) = 1− n+
∑
iN(o|Γi

,Γi,Γi).

Theorem 4. Given an optimal order oi for every subgraph
induced by Γi, we can construct an optimal global ordering
o for G as following. Obtain new orderings o′i by rotating
oi such that x comes first, and then removing x. Then, o =
x, o′1, . . . , o

′
n is optimal.

Proof. We show, by contradiction, that the global ordering
o is optimal. Notice that o|Γi is optimal for Γi. Assume
there is a strictly better ordering o′. According to Lemma 1,
there exists an x-block ordering o′′ at least as good as o′.
We have N(o,G,G) = 1 − n +

∑
iN(o|Γi ,Γi,Γi) ≤ 1 −

n +
∑
iN(o′′|Γi ,Γi,Γi) = N(o′′, G,G) ≤ N(o′, G,G)

which is a contradiction with o′ being strictly better, i.e.,
N(o′, G,G) < N(o,G,G).

Lemma 3. If G is a tree and o is a depth-first preorder of
G (with aribtrary root) then o is a rotated x-block order for
every node x.

Proof. Every preorder induces a rooted tree. With respect
to this root every node x (except the root) has a parent p
and a possibly empty sequence of direct children c1 . . . cn
ordered in the way that the depth-first search visited them.
When removing x, G is decomposed into the subgraphs Gp,
Gc1 . . . Gcn . If x is the root thenGp is the empty graph. The
order o has the following structure: some nodes ofGp, x, all
nodes of Gc1 . . . all nodes of Gcn , the remaining nodes of
Gp. Clearly this is a rotated x-block ordering.

Theorem 5. If G = (V,E) is a tree and o a depth-first
preorder of G then S(o,G,G) = 3|V | − 2.

Proof. A direct consequence of Lemma 3 is that every
node v has as many runs as its degree d(v) + 1. The +1
comes from the v-singleton. We have thus N(o,G,G) =∑
v∈V (d(v) + 1) = 2|E|+ |V | = 3|V | − 2.

Theorem 6. Computing an optimal order for graph G
is fixed-parameter tractable in the size of largest two-
connected component of G.

Proof. Recursively decompose G at articulation points until
only two-connected parts are left. As the size of the parts
does not depend on the size ofGwe can enumerate all orders
and pick the best one. Given optimal orders for every part we
can use Theorem 4 to construct an optimal global order.

Related Work
Contraction Hierarchies (CH) are a popular technique for
quickly finding shortest st-paths and st-distances (Geis-
berger et al. 2008). This preprocessing-based algorithm
takes as input a graph and an ordering over its vertices to
construct a new hierarchical search space. A “good” ver-
tex ordering in this case is one that yields a small search
space. Typically CH vertex orderings have been computed
using simple and efficient heuristics that rely on local graph

properties; e.g. as in (Geisberger et al. 2012). More re-
cent work (Bauer et al. 2013; Dibbelt, Strasser, and Wag-
ner 2014) has shown that for certain types of graphs, e.g.
those with bounded tree-width, there exist efficiently com-
putable orderings which can also bound the size of the re-
sultant search space. Computing an optimal ordering mean-
while – i.e. one which minimizes the size of the resulting
search space – is known to be NP-hard (Bauer et al. 2010).

Hub Labels (HL) (Cohen et al. 2002; Abraham et al.
2011) and Hierarchical Hub Labels (HHL) (Abraham et al.
2012) are popular and successful techniques for speeding
up shortest st-path and st-distance queries on road graphs.
Rather than storing a compressed database of first-moves,
HL and HHL store a database of compressed distances. In
particular, for each node there is a forward and backward
label containing a list of hub nodes and the exact distances
to them. For each st-pair there must exist a meeting hub
h that is a forward hub of s and a backward hub of t and
is on a shortest st-path. A meeting hub can be determined
using a simultaneous scan over both labels. A “good” la-
belling is one which reduces the overall size of the distance
database. In the case of HHL a labelling is computed by
first defining a partial order over the set of vertices in the in-
put graph. Proposed orderings for HHL involve bottom-up
graph contraction and greedy top-down strategies (Abraham
et al. 2012) and sampling-based variations thereof (Delling
et al. 2014b). Such orderings are efficient to compute in
practice and have been shown to yield small labels but they
do not come with any guarantees about the size of the re-
sultant database. Computing an optimal vertex ordering for
HHL is NP-hard (Delling et al. 2014a).

Conclusion

We have studied the problem of minimizing the size of a
compressed path database based on run-length encoding.
We have found that in the general case, for both directed
and undirected graphs, the problem is NP-complete. In more
specific cases, such as graphs that can be decomposed along
articulation points, the graph decomposition provides a de-
composition of the problem in independent sub-problems.
For example, since all interior points of a tree are articu-
lation points, trees can recursively be decomposed all the
way down to sub-graphs of size one. In effect, a depth-first
traversal of a tree provides an optimal node ordering.

Our results give a first theoretical underpinning to the
problem of creating space-efficient CPDs using RLE. We
provide a framework for understanding the very promising
empirical results recently reported by Strasser, Harabor, and
Botea (2014) which obtained good orderings for road net-
works and game grid maps. Our work also extends theo-
retical results from the areas of information processing and
databases (Oswald and Reinelt 2009; Mohapatra 2009).

A future work topic is developing tractable approximation
techniques that improve the performance of RLE in CPDs.
Harnessing available results on efficient, approximate TSP
algorithms might be an interesting direction to pursue.
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