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Abstract

We study the problem of efficiently computing journeys in

timetable networks. Our algorithm optimally answers profile

queries, computing all journeys given a time interval. Our

study demonstrates that queries can be answered optimally

on large country-scale timetable networks within several

milliseconds and fast delay integration is possible. Previous

work either had to drop optimality or only considered

comparatively small timetable networks. Our technique is

a combination of the Connection Scan Algorithm and multi-

level overlay graphs.

1 Introduction

We study the problem of answering queries in timetable
networks. Efficient algorithms are needed as the founda-
tion of complex web services such as the Google Transit
or bahn.de - the German national railroad company’s
website. The user enters his desired departure stop,
arrival stop and a vague moment in time and the sys-
tem should compute an optimal journey telling the user
when to take which train. In practice, trains do not ad-
here perfectly to the timetable and therefore it is neces-
sary to be able to quickly adjust the scheduled timetable
to the actual situation.

Formalizing the definition of an optimal query is
non-trivial. The straight forward adaptation of the
shortest path problem on graphs yields the earliest ar-
rival problem [21]. Given a source time, a source stop
and a target stop, the problem consists of finding a jour-
ney that departs after the source time and has a mini-
mum arrival time. Unfortunately, earliest arrival jour-
neys are flawed as the following example shows: The
user asks for A@8:00→B where A is the source stop, B
the target stop, and 8:00 the source time. Suppose that
there is a train A@10:00→B@11:00 and therefore the
earliest arrival is 11:00. Intuitively the user is only inter-
ested in the direct journey A→ B, but this is not nec-
essarily the only earliest arrival journey. Consider addi-
tional trains A@8:00→C@9:00 and C@9:00→A@10:00.
Another earliest arrival journey is A → C → A → B.
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However, intuitively it is clear that this journey is not
the answer to the user’s question; i.e. the earliest arrival
journey problem does not model the user’s expectations.
One solution is to additionally minimize the number of
transfers. This results in a bicriteria problem and is
often optimized in the Pareto sense [11], i.e., find all
journeys for which no journey exists that is better in
both criteria. However, Pareto optimization is expen-
sive. Therefore we chose an intermediate approach: We
optimize the arrival time as a primary and the trans-
fers as a secondary criterion, i.e., among all earliest ar-
rival journeys we choose one with a minimum number
of transfers. This variant was already proposed in [18].

Often the user is flexible with regard to his depar-
ture and/or arrival time. The basic earliest arrival prob-
lem does not reflect this flexibility. For this reason web
services propose several journeys with varying depar-
ture times. We formalize this concept as profile queries.
Given a source stop, a target stop, a source time and
a target time compute all optimal journeys that depart
after the source time and arrive before the arrival time.
However, this formalization is still not perfect as the
user often only wants to specify either the source or the
target time. For this reason we also consider the earliest
arrival time problem to estimate the target time based
on the source time and vice versa.

Our approach uses the Connection Scan Algorithm
(CSA) [9] as its core. CSA is a simple algorithm that
does not use a priority queue and does not rely on
computing auxiliary data in a preprocessing phase. Its
strength lies in its very low running time constants
allowing it to solve even moderately sized timetable
networks such as the London urban region in about
150ms. However, sublinear running times are necessary
on larger country-scale timetable networks such as the
one used by bahn.de. We therefore extend CSA to use
auxiliary data computed in a preprocessing phase. We
adapt the basic ideas of CRP [5, 8] and its multi-level
overlay predecessors [21, 16] to timetables. Previous
studies [3] have shown that directly applying speed-up
techniques designed for road graphs to timetables does
not work. It is crucial to adapt the algorithms to the
special timetable structure. CSA’s ability to handle
moderately sized timetable networks efficiently makes
the approach practical even if overlays are not tiny.
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1.1 Related Work. In [18] timetable routing is re-
duced to variants of the shortest path problem in
graphs. Time and transfers are optimized. Some
speedup techniques are evaluated, among them goal di-
rection using potentials. Only small instances are ex-
amined. RAPTOR [7] improves on this approach by
not using graph data-structures. They also consider
additional criteria such as price. In [22] multi-level
graphs are evaluated on timetables. In [12] contraction
hierarchies are adapted to timetables to optimize pro-
file queries. However, they do not optimize transfers.
In [4] the authors introduce two speedup techniques:
SUBITO and k-flags. They optimize transfers in the
Pareto sense. In [1], Transfer Patterns were introduced
and were refined in [2]. This technique was developed in
part by the Google Transit team and is the best com-
petitor in our scenario. It is the only technique that
has been shown to be practicable on large country-scale
timetable networks with about 60 000 000 connections.
This is slightly larger than our benchmark instance. Un-
fortunately, the preprocessing time is prohibitive. To
make preprocessing feasible, correctness is dropped and
even then multi-core CPU days are needed. Studied are
Pareto optimization and optimizing a single composed
criterion similar to ours. Profile times are not evaluated.

1.2 Our Contribution. Recent studies [7, 9] have
shown that often algorithms not based on Dijkstra’s
[10] work better on timetable networks. We describe
the first preprocessing based speedup technique that at
its core is not based on Dijkstra’s algorithm. We achieve
running times of 8.7 ms for the earliest arrival time prob-
lem and of 78 ms for the profile problem on large-scale
timetable networks with secondary transfer optimiza-
tion. Depending on the formalization our preprocessing
is either very fast (1 min) or fast (30 min). We know of
no provably optimal speedup technique achieving sim-
ilar running times for similar optimization criteria on
large scale timetable networks. Our preprocessing is or-
ders of magnitude faster than existing approaches.

2 Basics

In this section we formally define the notions of public
transit network and journey and give a motivation for
the design choices. We further formally define profiles
and formulate the precise problems considered in this
study.

2.1 Network. A (timetable) network consists of
stops, connections, trips and a transfer graph (defined
in the next subsection). A connection c represents a ve-
hicle driving from a departure stop cdepstop at departure
time cdeptime without intermediate halt to an arrival

stop carrstop at arrival time carrtime. Travel times must
be strictly positive. Connections served successively by
the same vehicle are part of the same trip ctripid.

Following [7], we only consider aperiodic timetables,
where vehicles only drive once and are not repeat every
day. To support queries involving overnight trains we
unroll the network one day, i.e., we copy all connections
and add 24h to the departure times and arrival times.
However, queries are only allowed within the first 24h.

At first an aperiodic timetable seems less realistic
than the periodic ones with perfectly repeating connec-
tions considered in other papers [18]. However, it is also
unrealistic that schedules are never changed, especially
when considering delays, and therefore both are models
do not fully capture reality.

A third more realistic model assumes that the input
only consists of a finite connection subset of an infinite
aperiodic set of actual connections. However with this
realistic model has some severe problems. For example
one can only decide whether a journey exists that solely
uses input connections. However, if no such journey is
found, it does not mean that no journey exists using
connections in the infinite set of all connections. It is
not possible to decide whether a journey exists solely
based on the input. We conclude that at some point
perfect realism must be dropped.

In practice the differences between the periodic and
aperiodic approaches are small, as the user is rarely
interested in journeys longer than 24h. It makes no real
difference whether a bogus journey is found or none is
found at all. In both cases the user will look for different
transportation options (such as planes).

2.2 Transfers. While real world datasets tend to
agree on the modeling of vehicles, they differ signifi-
cantly when it comes to modeling transfers. These dif-
ferences are also reflected in the published papers but
are rarely discussed.

For example, a widely used format is the General
Transit Feed Specification [14]. It only allows for foot-
paths between two stops, i.e., the feed contains a list of
weighted directed arcs that represents a transfer option
from one stop to an adjacent one. No change times at
stops are specified, allowing the user to instantly trans-
fer between vehicles arriving and departing at the same
stop. Many feeds model large train stations not as a
single stop but each railway platform inside the station
as individual stop and connect the platforms using foot-
paths.

Another specification is given by HAFAS [15]. Our
benchmark instance is based on it. Here neighboring
platforms are modeled as a single stop. To assure
that the user is given enough time to transfer from
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one vehicle to another one, every stop is associated
with a minimum change time τmin, i.e., the difference
between the departure time of the connecting vehicle
and the arriving one must be at least τmin. The dataset
also contains a few footpaths to connect neighboring
platform regions. A large train station might for
example be modeled as three stops interconnected by
footpaths: the main platforms, the subway platforms,
and the forecourt platforms. HAFAS-based feeds tend
to have fewer footpaths than GTFS-based ones.

There are GTFS feeds that contain footpath loops,
such as for example the feed of Berlin [13]. These are
footpaths with the same departure stop and arrival stop
and a non-zero duration. The idea of these “footpaths”
is to encode the minimum change time but the GTFS
specification does not state whether this formulation is
valid. However, GTFS does not provide a better way to
encode this type of information.

At first glance the GTFS approach of modeling
platforms as stops instead of whole stations as stops
seems superior as it is more fine grained. However, in
some countries such as France the operator does not
planned in advanced at which platform a vehicle will
arrive. Platforms are assigned to trains a few dozen
minutes before the arrival of the vehicle. This can not
be modeled without minimum change times.

When mixing footpaths and minimum change times
a couple of questions arise. Let A and B be two
stops with minimum change times of 5min and 10min
and a connecting footpaths of 3min. Is the transfer
time 3, 8, 13, or 18 minutes? We model the most
general case allowing 3min transfers. A footpath can
replace minimum change times. Note that this allows
for transfers below the minimum change times. We
observed instances of this actually happing in real data.
However, one might argue that this is a data error.

Having motivated the need for both footpaths and
minimum change times, we are ready to present our
definition of the transfer graph, an abstraction that
avoids the need to distinguish between both. It is a
directed weighted graph. The stops are its nodes. We
denote its directed arcs using A→B and refer to them
as transfers. Their weight is denoted using d (A→B)
and referred to as duration. Footpaths are modeled as
interstop transfers and minimum change times as loops.
Every stop is required to have a loop. The duration
must be non-negative. Multi-arcs are not allowed. The
user is by definition required to use at least one transfer
when changing vehicles. To assure that one transfer is
also always enough, we require additional restrictions
on the transfer graph. Following [7] we require that
the transfer graph is transitively closed. An equivalent
characterization is to say that the transfer graph is a

union of disjoint cliques. We further require that the
triangle inequality is fulfilled, i.e, for every two transfers
A→B and B→C the duration of the transfer A→C
(which must exist) is never larger than the sum of the
durations of A→B and B→C. These requirements
assure that all shortest paths are at most one hop
long. If the input transfer graph does not fulfill these
requirements, then it can easily be transformed to do so.
In theory this can severely increase the transfer graph’s
size. However, transfers should not model the user
walking from one station to a neighboring one. Transfer
graphs are therefore highly disconnected, which results
in only a small size increase. For unrestricted multi-
modal routing a different approach is needed.

2.3 Journeys. We model journeys as sequence of
connections and transfers. We first define partial jour-
neys that can end and/or depart in the middle of a trip.
Based on these we define complete journeys that are re-
quired to depart and arrive at a stop and must use an
initial and final transfer.

A partial journey is a sequence of connections and
transfers in temporal order, i.e., a connection must
arrive before the next one can depart. Two successive
connections c and c′ either share the same trip and
carrstop = c′depstop or are separated by a transfer t with
carrstop = tdepstop and tarrstop = c′depstop. Without loose
of generality we can forbid successive transfers, as they
can always be replace by a direct transfer that is not
shorter. If a sequence begins (ends) with a transfer
we say that it departs (arrives) at the source (target)
stop of the transfer and has a departure (arrival) time.
Otherwise it begins (ends) with a connection. We
say that a partial journey departs (arrives) at that
connection.

A partial journey is called a complete journey (or
just journey) if it begins and ends with a transfer. To
avoid a border case in the profile definition, we do not
consider journeys consisting of a single transfer to be
complete. This is no real restriction as testing for single
transfer journeys is simple. We say that a (complete)
journey is an A@τ→B-journey, if it departs at A no
earlier than τ and arrives at B. Partial journeys are only
used in intermediate steps of our algorithms. Unless
stated otherwise journeys are complete. A complete
journey can be represented more compactly by only
storing the connections adjacent to transfers. The
intermediate connections can easily be inferred.

2.4 Optimization Criteria. We consider different
optimization criteria. The basic ones consist of minimiz-
ing arrival time or the number of transfers. However,
these two can also be combined yielding further more
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complex criteria. For example we also consider deter-
mining a journey with a minimum number of transfers
among those with a minimum arrival time. To avoid
having to formulate algorithm variations for each crite-
rion, we define an abstract journey cost. Unless stated
otherwise, our non-accelerated profile algorithms can
minimize any cost that fulfills a short set of axioms. All
the afore mentioned criteria fulfill these requirements.

A cost is a function that maps partial and com-
plete journeys onto values that can be totally ordered.
A A@τ→B-journey is optimal, if no other A@τ→B-
journey with lower costs exists. We require that the cost
function fulfills the suffix exchangeability condition: Let
s1s2 . . . sn denote an optimal A@τ→B-journey. Con-
sider any suffix si . . . sn that is a complete journey de-
parting at stop C at time τ ′. Replacing the suffix with
any optimal C@τ ′→B-journey must yield another opti-
mal A@τ→B-journey.

The combined criteria can be realized using a cost
function that maps journeys onto lexicographically or-
dered pairs, consisting of the arrival time and the num-
ber of transfers. What component is compared first de-
cides what criteria is more important. As optimization
we encode these pairs as single integer where the im-
portant criterion is encoded within the higher bits and
the unimportant criterion in the lower bits. This allows
to perform a lexicographical comparison using a single
integer comparison.

It is straight forward to additionally define pre-
fix exchangeability : Let s1s2 . . . sn denote an optimal
A@τ→B-journey. Consider any prefix s1 . . . si that is
a complete journey arriving at C. Replacing the prefix
with any optimal A@τ→C-journey must yield another
optimal A@τ→B-journey. However, only the earliest
arrival criterion fulfills this property. Minimizing the
number of transfers does not and therefore the combined
criteria do not either. For example suppose that the
prefix s1 . . . si contains 2 transfers and that a A@τ→C-
journey with 1 transfer exists that arrives later. It is
impossible to guarantee that exchanging the prefix does
not invalidate the transfer connecting the prefix to the
rest of the journey sequence. Transfer minimization not
fulfilling prefix exchangeability severely limits the con-
cept’s usefulness. We therefore only exploit postfix ex-
changeability in our profile algorithms. This is the rea-
son why we constructs journeys backward starting at
the target stop.

2.5 Profile. Profiles are functions that map depar-
ture times onto arrival times (or generalized costs).
Given two stops A and B we define a A→B-profile to
be the function that maps τ onto the costs of an op-
timal complete A@τ→B-journey (or +∞ if no journey

exists). As by definition all journeys must contain at
least one connection and there are only finitely many
connections, there may only be a finite number of τ val-
ues, where the function changes its value. The profile
functions are therefore always step functions. Further
as a A@τ→B-journey is also a A@τ ′→B-journey for all
τ ′ < τ , the profile functions are non-decreasing. Profiles
can be identified by a sequence of (τi, Ci)-pairs, where
the function changes its value. In each pair τi is the
departure time and Ci the cost. The sequence is simul-
taneously ordered by τi and Ci. These pairs correspond
to departing vehicles.

To compute actual journeys (instead of just profiles)
we tag every pair with two connection IDs. These
represent the connections, where the user enters the first
vehicle and exits the first vehicle of the journey. This
allows to extract the first part of an optimal journey.
The remaining parts can be extracted by iteratively
repeating the process at intermediate stops. We refer
to these connection IDs as journey pointers.

2.6 Problems. The input to the earliest arrival time
problem consists of a network, a source stop ps, a source
time τs, and a target stop pt. The goal is to compute
the minimum arrival time over all ps@τs→pt-journeys.
Analogously the latest departure time problem consists
of maximizing the departure time among all journeys
arriving not later than a given target time τt.

In the profile problem, one is given a network, a
source stop ps, and a target stop pt. The objective is
to compute the sequence of (τi, Ci)-pairs corresponding
to the ps→pt-profile. Note that source and target times
are not restricted. The problem consists of computing
full profiles.

The range profile problem takes as additional input
a source time τs and a target time τt. All pairs in the
ps→pt-profile sequence should be computed that depart
no earlier than τs and arrive no later than τt.

Note that the (range) profile problems are
parametrized on the cost function used. First optimiz-
ing arrival time and then optimizing transfers as a sec-
ondary criterion is the cost function we want to solve.
As an intermediate step in the preprocessing we will
also need to solve profile problems that solely optimize
transfers.

Further note that the earliest arrival time and
latest departure time problems are basically equivalent.
Solving one on a network N consists of solving the other
on a transformed network N ′ constructed as following:
The stops are the same. The transfer arcs have their
direction inverted. All connections have exchanged
departure and arrival stops. The departure and arrival
times are negated. The range profile problem can be
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reduced to the profile problem by removing connections
with departure time or arrival times outside of the
range.

In our envisioned websystem the user is first
prompted for a source stop and a target stop. He must
additionally enter a source time or a target time (or
both). If he enters both then the query consists of solv-
ing the range profile problem. If only one is given, the
system must estimate a sensible value for the other one.
If he indicates only a source time τs, the system solves an
intermediate earliest arrival time problem, to determine
the minimum travel time τ . The system then suggests
τt = τs + a · τ , where a is some tuning parameter. We
set a = 2. Analogously, if only a target time τt is given,
the system solves the latest arrival time problem and
suggests τs = τt − a · τ .

2.7 SIMD. Many modern processor architectures
support single instruction multiple data (SIMD). These
are special hardware registers that store fixed length
vectors of scalars. The processors contain special in-
structions, that can apply operations componentwise to
the vectors. These special instructions are as fast as
their single scalar counterparts. Using bitmasks sim-
ple conditional operations can be done componentwise.
However, most algorithms have to be adjusted to exploit
such SIMD parallelism, because they contain branches
that diverge too much to be done using bitmasks. A cur-
rent x86 processor supports integer vectors of width 4
containing 32-bit integers. Next generation processors
are planned to support vectors of 8 integers. Using ac-
celerator cards widths of 16 integers are possible.

3 Connection Scan without Auxiliary Data

In this section we recapitulate the basic Connection
Scan approach to journey planning introduced in [9].
We extend the profile algorithm to minimize generalized
cost functions and parallelize it using SIMD.

All algorithms are based on dynamic programming.
We maintain a solution that only considers the scanned
connections. (The solution, however, always contains all
stops and trips. The trips initial contain no connections
though.) Initially no connection was scanned, which
allows for a trivial initial solution. We then iteratively
introduce connections ordered by their departure time.
At each step we modify the solution to incorporate
the new connection c. For this it is sufficient to only
consider journeys containing c, as the other journeys
can not be modified by introducing a new connection.
As the connections are scanned ordered by departure
time, the new connection c can only appear at the end
of a journey (or beginning if scanned by decreasing
departure time). Our objective is to compute journeys

A B

C
6 4

3 3

Figure 1: The capital letters denote stops. The arrows
represent transfers and are annotated with their dura-
tion. A first vehicle arriving at A@1 sets τ (B) = 4 and
τ (C) = 7. A second vehicle arriving at B@2 can im-
prove τ (C) but not τ (B).

between a source stop ps and a target stop pt. However,
during the algorithm we do not maintain such a one-to-
one solution but a one-to-all solution, i.e., for a fixed
source stop ps and all possible target stops pt. (When
scanning the connection decreasing by departure time,
we maintain an all-to-one solution.)

3.1 Earliest Arrival Time Algorithm. We solve
the earliest arrival time problem by scanning the con-
nections increasingly by departure time. We fix a source
stop ps and maintain a one-to-all solution, that consists
of a tentative arrival time τ (p) for every possible target
stop p. We further store at every trip q a reachability bit
r (q) that indicates whether a partial journey exists that
ends in a connection of this trip. Initially no r (q)-bit is
set. All τ (p) are +∞ except if a transfer ps→p exists. In
this case we set τ (p) = τs +d (ps→p). When scanning a
connection c we first determine, whether r (ctripid) must
be updated and then adjust the tentative arrival times.
If r (ctripid) is set, a partial journey ending in a con-
nection of trip ctripid must exist. This partial journey
can be extended by appending c, resulting in a partial
journey ending in c. If it is not set then c can only be
part of a journey, if the user can enter at cdepstop. This
can be checked using τ (pt) ≤ cdeptime and if it is the
case, r (ctripid) must be set. If the updated r (ctripid) is
set, a partial journey ending in c must exist. By ap-
pending a transfer departing at carrstop the journey can
be completed. We do this by iterating over all outgoing
transfers carrstop→p and decreasing the tentative arrival
time τ (p) if a better journey is found.

As basic optimizations the scan can be started at
the first connection c with cdeptime ≥ τs and aborted
once τ (pt) ≤ cdeptime holds. A further more complex
optimization is called limited propagation. It consists of
only iterating over the outgoing transfers, if carrtime ≤
τ (carrstop). Intuitively the idea behind limited propa-
gation is, that if we can not ameliorate the solution at
carrstop, we can not do it anywhere, as the better jour-
ney ending in carrstop can be append with another trans-
fer resulting in a better journey everywhere. However,
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note that the afore mentioned test is not equivalent with
τ (carrstop) being decreased as the situation in Figure 1
demonstrates.

3.2 Profile Algorithm. The profile algorithm uses
a very similar approach. The main difference is that
the connections are scanned decreasing by departure
time to exploit suffix exchangeability. We fix a target
stop pt and maintain an all-to-one instead of a one-to-all
solution. Further storing full profiles is more complex,
which reflects in more complex data structures. We first
introduce the data structures used, then describe how
they relate to the profiles and what their counterparts
in the basic earliest arrival case are. We then describe
how a new connection c can be introduced and what
modifications in the data structure are necessary.

Our datastructure consists of: the tentative cost
functions Fp, the tentative trip costs Cq, and the
transfer-to-target durations wp. The tentative cost func-
tions Fp replace the tentative arrival times of the base
algorithm. They are profile functions that map the de-
parture time at the stop p onto the minimum cost over
all journeys with target pt. The tentative trip costs Cq
replace the trip reachability bit of the base algorithm.
These are values that store the minimum cost over all
partial journeys that depart in a connection of this trip
and arrive at pt. Finally the transfer-to-target dura-
tions wp have no real counterpart in the base algorithm.
If a transfer p→pt exists then wp is set to d (p→pt) and
+∞ otherwise.

We initially set the wp to +∞ at the beginning
of the program and before and after each query we
iterate over all incoming transfers of pt. By definition
each complete journey must contain a connection and
therefore initially no journey can exist. This allows us to
initially let each tentative cost function map every value
onto +∞ and also set all tentative trip costs to +∞.

Let c be the currently processed connection. We
first compute the minimum cost over all journeys de-
parting in c to update Cctripid

. To do this consider all
options the user has upon the arrival of c: Sometimes
he can directly transfer to the target, or he can remain
seated, or use a transfer and enter another vehicle. The
costs of the first two cases can be computed using wp

and Cq. The last one requires evaluating Fcarrstop . The
correctness of the later can be seen as following: Sup-
pose an optimal journey did exit upon the arrival of c.
The suffix exchangeability allows us to exchange the
journey suffix after c, with the journey that caused the
value of Fcarrstop . After updating Cctripid

we prefix the
corresponding partial journey with all incoming trans-
fers p→cdepstop and adjust Fp if needed. Limited prop-
agation can be applied: It is sufficient to only iterate

over the transfers, if inserting a (cdeptime, Cctripid
) would

not modify the function.

3.3 Tentative Cost Function Operations. Recall
that profile functions can be identified by an ordered
sequence of (τi, Ci)-pairs. We store these in dynamic
arrays that can be enlarged at the front. A function
is evaluated at τ by sequentially iterating over all pairs
starting at lower values. In theory this evaluation loop
can have many iterations. However, experiments in Sec-
tion 6 show that the contrary is the case: The loop
nearly always aborts directly. The newly introduced
connection c has a minimum departure time. It there-
fore tends to only change profiles for small values of τi,
i.e., precisely those stored at the front of the array. New
pairs are also inserted using a sequential scan. We call
this loop the insertion loop. The same effect can be ob-
served. In essence all operations require quasi constant
running time, giving the whole profile algorithm a run-
ning time quasi proportional to the number of scanned
connections. In [9] we have shown, that if no interstop
transfers (i.e., footpaths) exist, the algorithm can be
modified such that amortized constant worst case run-
ning time bounds for the cost function operations can
be proven.

3.4 Multi-Query Connection Scan. The profile
algorithm can be parallelized using SIMD, resulting in
lower amortized times. Denote by n the width of the
SIMD vectors. Our algorithm can compute profiles for
n different target stops in parallel. This is useful in
preprocessing. A different scenario involves a server
with many simultaneous requests. It can answer several
queries in parallel using a single thread, resulting in a
higher throughput.

We replace Cq and wcarrstop by SIMD-vectors and all
operations on them by SIMD-instructions in a straight-
forward way. The varying lengths of the dynamic arrays
underlying the tentative cost functions result in diverg-
ing code paths prohibiting a direct parallelization. We
observe that these arrays may contain duplicated entries
without producing incorrect results. We store a single
array that is used by all n queries. It contains (τi, Ci)-
pairs, where τi is a non-vectorized departure time and
Ci is a SIMD-vector of costs. A pair is inserted if is
not dominated in every query. Dominated cost vector
components are replaced by the dominating cost. The
arrays are longer but SIMD-parallelization is possible.

4 Accelerating Connection Scan

We utilize the core idea from CRP [5, 8]. It consists of
subdividing a road graph into cells and computing for
each cell a replacement graph that preserves shortest

130 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

09
/2

5/
20

 to
 1

41
.3

.2
6.

23
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



A

B

C

D

(a) The solid black connections
are transit connections.

ps

pt

(b) The transit connection sets
participating in a normal query.

ps

pt

(c) The transit connection sets
participating in a local query.

Figure 2: Boxes represent cells. In the right two figures every cell is subdivided into 4 subcells. Curved lines
are journey parts consisting of several connections. Arrows denote single connections. Letters denote stops. The
shade of a cell indicates the density of a cell. A darker shade signals a denser set.

paths. Translated into the timetable setting, we recur-
sively partition the stop set into k cells over ` levels.
The top cell is the full stop set. We define a connection
to be interior (exterior) to a cell z, if it (does not) de-
part in z. An entry (exit) connection of a z is departs
(arrives) outside of z but arrives (departs) inside.

4.1 Partitioning. The stops are partitioned by run-
ning a graph partitioner [17] on the following graph:
Stops are mapped onto the same node if there is a
transfer between them. This prohibits transfers from
crossing cell borders. An edge exists if a corresponding
connection exists and is weighted by the number of such
connections.

4.2 Transit Connection Set T (z). For every cell z
we store a set of transit connections T (z). The transit
connections are interior connections and every optimal
journey that goes through the cell can be replaced by
a journey, that only changes vehicles at connections
in T (z) (or are exterior to z). Consider the example
in Figure 2a. Suppose that the journeys A→B→D
and A→C→D are both optimal. It is sufficient to
add one of them (in the example the one through B)
into the transit connection set, because any subjourney
though C can be replaced by the one through B
without modifying the cost. Note that several transit
connection sets are valid, as we could have included
the journeys through C. Our algorithm computes some
small valid sets but not necessarily a smallest one. The
set only contains the connections adjacent to a transfer
in the journey. The intermediate connections are not
contained. We do this because the base algorithms
introduced in Section 3 successfully find the journeys

traversing the cell, even if only those connections are
scanned. Also note that connections that depart outside
of z are not part of the transit set of z, but of the set of
its neighboring cell.

Transit connections are computed using the algo-
rithms in Section 5. In this section we assume that a
blackbox is available that does this. The input of the
blackbox is the set of entry and exit connections of z
and a set of connections to scan.

4.3 Long Distance Connection Set D (z). For
every cell z we additionally define a set of long distance
connections D (z) as following: If z is at the bottom
level then D (z) is the set of all interior connections, and
otherwise it is the union of the transit connection sets of
all direct children cells of z, i.e., D (z) =

⋃
T (zchild). At

query time we merge all D (z) of cells z containing the
source stop or the target stop (or both) resulting in one
large connection subset Q. The set Q is illustrated in
Figure 2b. Let the dotted journey j be optimal. We can
not guarantee that our algorithms will find j. However,
one can iteratively replace the subjourneys in each cell
and obtain the solid line journey j′. We can guarantee
that j′ is optimal and our algorithms find j′. We run
the algorithms from Section 3 but only scanning the
connections in Q.

4.4 Improving Local Queries. Local queries,
where the source stop and the target stop are nearby, are
common and therefore we optimize them. We achieve
this by not merging all sets up to the top level but only
up to the lowest common ancestor cell zlca. Consider
the situation in Figure 2c. The top shaded cell is zlca.
Most journeys will be fully contained within zlca and will
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therefore be found. However a few journeys exist that
exit zlca and reenter it (possibly multiple times such as
the solid journey). We therefore store an additional set
of loop connections L (zlca) at every cell, that contains
all connections necessary to find journeys that exit and
reenter zlca. The set Q is the union of the long distance
connection set of all sets containing either ps or pt (but
not both), and D (zlca) and L (zlca).

The loop connection set of a cell z can be com-
puted by passing z’s entry and exit connections to the
blackbox and letting it scan every connection (including
those outside of z). The connections not needed for the
extremely rare journeys that enter and exit z multiple
times and are inside of D (z) can be removed from L (z).

4.5 Efficiently Computing T (z), D (z) and L (z).
Computing the connection sets by considering the whole
network is too slow. We therefore exploit the hierar-
chy already during their construction and restrict the
connections scanned by the blackbox. In a first phase
we compute T (z) and D (z) in an alternating bottom
up fashion. In the second phase L (z) is computed
top down. The main idea of the first phase is that
transit connections are long distance connections, i.e.,
T (z) ⊆ D (z). It is therefore sufficient if the blackbox
scans D (z). Long distance connections are computed
using using D (z) =

⋃
T (zchild), with the exception of

the lowest level where D (z) is the set of interior con-
nections. The second phase exploits that loop connec-
tions are either loop or long distance connection of the
parent cell, i.e., L (z) ⊆ D (zparent) ∪ L (zparent). The
exception is the top cell where the loop set is empty. To
improve locality we remove stops without connections
or transfers before running the blackbox. Operations
on the same level can be parallelized but we found that
parallelizing the blackbox is more effective because of
unbalanced workloads per cell. Recall that we scan the
connections ordered by departure time. We therefore
assign ids to the connections in this order. All com-
puted sets are stored as ordered connection ID arrays.
This allows efficient merging without loading any con-
nection details. If a time range is given, we first discard
the connections outside of the range and then merge the
remaining connections.

4.6 Tailored for the Earliest Arrival Problem.
We can solve the earliest arrival problem by first com-
puting Q and then running the basic CSA algorithm.
However, we can accelerate the base algorithm by not
explicitly merging the connection sets and processing
the connections out of order.

To achieve this we must first modify the base
algorithm to support the scanning of connections in

a

bc

d

e

A B

ti
m
e

Figure 3: The vertical lines are stops and the arrows
connections. The upper case letters denote stops and
the lower case letters connections. The connections c, d
and e are part of the same trip.

arbitrary order and not only by increasing departure
time. Consider the situation depicted in Figure 3.
Suppose that initially only b is reachable, i.e., only a
partial journey ending in b exists. The connections
are scanned in following order: b, e, c, a. After
scanning b the stop B is reached. After processing e,
the reachability bit of the trip etripid is set. As etripid =
ctripid the next connection c is considered reachable
as r (ctripid) is set, even though no partial journey
exists that ends in c. As c is considered reachable the
stop A is reached and thus the next connection a is also
erroneously considered reachable. This problem can be
fixed by replacing r (q) by an integer representing the
position of the first reachable connection inside trip q.
When scanning a connection c the algorithm does not
test whether the bit is set, but whether r (ctripid) is
smaller than c’s position.

Consider a query with source cell zs, target cell zt
and source time τs. If a journey exists then an optimal
journey exists that first uses connections from D (zs),
then from D (zparents ), . . ., D (zlca), L (zlca), D (zlca), . . .,
D
(
zparentt

)
, and finally from D (zt). Instead of merging

those sets we “guess” that an earliest arrival journey
arrives before τs + c for some constant c. Next we try
to verify if we guessed correctly and if not increase c
and repeat. We verify our guess by iterating over the
sets in the order given above. For each set S we scan
the connections in S departing before τs + c increasing
departure time. If a journey arriving before τs+c exists,
it is found this way. As optimization, we do not process
connections multiple times and ignore those departing
before τs by running a binary search on each set.

5 Computing Transit Connections

In this section we implement the blackbox from Section
3. Given a set of entry and exit connections and a set of
connections to scan, the blackbox computes the transit
connections. We describe two constructions Ta (z)
and Tt (z) with different properties. The arrival time
transit set Ta (z) can be computed quickly but only
guarantees that an earliest arrival journey is found. It
has no guarantees with respect to transfers. Further
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A B C ptps

cell z

ti
m
e

Figure 4: The vertical lines are stops. The arrows are
connections. The vertical position is the time. Con-
nections arriving and departure at the same moment
are part of the same trip. Stops A and B are part of
the same cell z. Stop A is an interior border stop of z,
whereas C is an exterior border stop. Only the thick
connections are in Ta (z), whereas all interior connec-
tions are in Tt (z).

ps A B

pt

3→6

4→5

7→8
1→2

z

Figure 5: The capital letters represent stops. The
arrows are connections. The solid arrows are part of
the same trip. The dashed one is in its own trip. The
circle represents a cell z containing only the stop A. The
stop A is an interior border stop and B is an exterior
one. The connections are annotated with departure and
arrival times. Only the dashed connection is in Ta (z).

non-zero duration transfer loops, i.e. minimum change
times, are not supported. On the other hand, the
transfer transit set Tt (z) needs more preprocessing time
but does not have these limitations. The transit sets
are constructed such that the subjourney between an
entry and exit connection pair can be replaced with an
equivalent subjourney found in the transit set. Both
constructions are parallelized using threads and SIMD.

5.1 Arrival Time Transit Set Ta (z). We first iden-
tify all interior (exterior) border stops as the arrival
stops of entry (exit) connections. Note that there are
significantly less border stops than border connections.
In the next step we compute profiles from every inte-
rior border to every exterior border stop. We optimize
arrival time for correctness. We optimize transfers sec-
ondarily to heuristically improve the results. Figure 4
depicts an example Ta (z).

This construction is only correct if all transfer loops
have zero-duration. Consider the situation in Figure 5.
As the dashed connection dominates the solid one, only
the dashed one is included in Ta (z). If B has a zero
transfer loop an earliest arrival journey between ps and
pt is found, as the user can transfer at B from the dashed
vehicle back into the solid one. However, if the transfer
duration of the loop at B is greater than 2, no journey
is found at all.

5.2 Transfer Transit Sets Tt (z). To com-
pute Tt (z) we compute for each pair of entry and
exit connections a journey with a minimum number
of transfers. Note that for a specific pair all journeys
are required to end in the same connection. All valid
journeys therefore have the same arrival time and thus
it is sufficient to optimize transfers. We do this by
computing profiles between every pair of entry and exit
connections. As profiles can only be computed between
stops, we split each entry and exit connection into two
and add a dummy stop in the middle. We compute the
profiles between pairs of dummy stops.

5.3 Parallelization. Both transit sets are computed
by enumerating all profiles between a set of source
stops S and a set of target stops T . For each pt ∈ T
we compute an all-to-one profile solution and extract for
each ps ∈ S the corresponding journeys by following the
journey pointers. We parallelize this operation by sub-
dividing T into work packages of n elements, where n is
the width of the SIMD vector. A thread then processes
a work package by computing all profiles simultaneously
using SIMD. However, the journey extraction can not
be done using SIMD.

5.4 Intermediate Transit Sets. The transfer tran-
sit set Tt (z) is constructed such that it conserves all
Pareto optimal journeys. However we do not exploit
this property afterwards. We only compute a journey
with a minimum amount of transfers among all earli-
est arrival journeys. Is it possible to design a transit
set larger than the arrival time transit set Ta (z) but
smaller than Tt (z) that only conserves these journeys?
We can not give a definitive answer about its existence
but it is very unlikely that it could be computed faster
than Tt (z) and would therefore be useless. Consider the
situation in Figure 4. Every transit set must contain the
thick connections because otherwise the earliest arrival
journey from ps to C is not conserved. The question
therefore is: Which of the thin interior connections are
superfluous? For an efficient transit set computation, it
is necessary that we only use information depending on
the interior of the cell. We therefore can not tell which
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D

extra inserted pairs average average
run. time for pair earliest insert evaluation
time journey count when loop loop
[ms] pointers /106 inserted iterations iterations

◦ ◦ 2 640 509 4.3 97.5% 1.006 1.013
• ◦ 3 361 812 5.7 97.6% 1.009 1.021
• • 1 468 405 11.6 97.1% 1.023 1.055

Table 1: Details of the all-to-one profile algorithm on the full network. The time range is not restricted.

of the dashed connections exist. We have to compute
one transit connection set, that is correct for each com-
bination of dashed connections existing. If both of them
exist, all thin connections must be transit connections.
We conclude that it is not possible to conserve fewer
than all Pareto optimal journeys, without looking at
the outside of the cell.

6 Experiments

We ran experiments on a dual 8-core Intel Xeon E5-2670
processor clocked at 2.6 GHz, with 64 GiB of DDR3-
1600 RAM, 20 MiB of L3 and 256 KiB of L2 cache. We
use g++ 4.7.1 with -O3. In the tables an enabled feature
is marked by a “•” and a disabled one by a “◦”. SIMD
is done using SSE with registers containing 4 integers
of 32 bits. We ran 104 queries with random source and
target stops and a random source time within the first
24 hours.

#stops 252 374
#connections 46 218 148
#trips 2 395 656
#footpaths 103 535
#FIFO-routes 229 666
#TE-nodes 82 017 803
#TE-arcs 202 073 458

Table 2: Instance size

6.1 Instance.
Our test instance is
based on the data
of bahn.de during
winter 2011/2012.
The data contains
European long
distance trains,
German local trains,
many buses inside of
Germany and even
more exotic vehicles such as rack railways in the Alps.
To obtain an instance comparable in size with [1] we
extracted all trips regardless of their day of operation
and consider two successive identical days. We removed
data noise such as exactly duplicated trips, vehicles
driving at more than 300 km/h or footpaths at more
than 50 km/h. More than half of the connections
are buses. Minimum change times are modeled as
transfer loops and footpaths as interstop transfer arcs.
We transitively closed the transfers and obtain the
sizes reported in Table 2. For comparison with [7]
we indicate the number of FIFO-routes, i.e., into how

many parts the set of trips has to be partitioned (at
most) such that all trips in one part have the same
stop sequence and do not overtake eachother. For
comparison with [1] the time-expanded (TE) graph size
is indicated.

6.2 Reference Times. We ran a reasonably tuned
version of Dijkstra’s algorithm with a binary heap. The
advanced optimizations from [18] were not included. On
average it settled 10 554 570 nodes and needed 2 960ms
for a one-to-one query optimizing only arrival time. A
non-profile one-to-one CSA as described in Section 3
needed on average 298.6ms.

6.3 Profile Queries. In Table 1 we evaluate the un-
accelerated CSA described in Section 3. We report run-
ning times with and without journey pointers. SIMD
running times are divided by the number of simultane-
ous queries. We report the number of inserted pairs and
how many were inserted at the front of the array (i.e.
have an earliest departure time when inserted). We fur-
ther report how many iterations the insertion and the
evaluation loops needed. Computing pointers increases
running times by 25%. Optimizing transfers inserts ad-
ditional pairs which costs in time. SIMD halves the
running time. The two loops nearly always terminate
right away. SIMD increases the number of iterations but
they remain negligible. Unsurprisingly a near constant
insertion loop implies most pairs being inserted at the
array’s front.

S
IM

D

tr
an

sf
er

running
time [s]

◦ ◦ 45.4
• ◦ 49.2
◦ • 2007.8
• • 1794.7

Table 4: Parallelized
running time needed
to compute overlays.

6.4 Computing Overlays.
In Table 4 we report the times
needed to compute the transit
sets introduced in Section 5.
To compute the Ta (z) we set
all transfer loops to zero in this
experiment. “transfer” indi-
cates whether Tt (z) or Ta (z)
is computed. All 16 cores are
used. We recursively subdi-
vide the stops 5 times into 3
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(a) Computing Tt (z). (b) Computing Ta (z).

Figure 6: Running times needed to compute the transit connections against their border size. The data points
are annotated with the geographical regions that they belong to. Thread parallelization was used. SIMD was not
active.

only time Ta (z) with transfers Tt (z)
level |D (z)| |L (z)| |D (z)| |L (z)|

0 193 029 11 232 193 029 11 109
1 70 781 15 204 115 660 14 042
2 93 933 20 046 138 036 18 836
3 125 642 24 046 181 689 24 065
4 154 790 25 155 222 143 24 596
5 168 080 0 277 454 0

Table 3: Number of long distance and loop connections
averaged over all cells on the same level. Level 5 is the
top.

partitions. Ta (z) can be computed in under a minute
enabling real time updates. The alternative Tt (z) can
be computed in half an hour, which should be fast
enough for most applications. SIMD-speedup is smaller
than in the base query case because following jour-
ney pointers is sequential. Further interleaving pointers
from different queries destroys cache locality, which ex-
plains the slight slowdown for Ta (z). We use Tt (z) in
all query experiments.

Table 3 shows the sizes of the connection sets
corresponding to Table 4. A first observation is that
the arrival time transit sets Ta (z) are smaller, than
the transfer transit sets Tt (z). This is a direct result
of the effect illustrated in Figure 4. As expected the
number of loop connections is significantly smaller than

the number of long distance connections. With the
exception of the bottom level the average size of each
long distance connection set increases with each level.
The size of the bottom level suggests that a further
subdivision might be useful to decrease query running
times. We decided against it after doing some quick
preliminary experiments. The higher levels dominate
the amount of scanned connections and therefore the
maximum impact on the query running times is small.
However, an additional level exponentially increases
the number cells, which resulted in significantly longer
preprocessing times.

In Table 4 we observed that computing Tt (z) is
significantly more expensive than computing Ta (z).
We therefore analyzed the running times per cell in
greater detail in Figure 6. Figure 6a shows that
the running times needed to compute the Tt (z) is
quadratic in the number of entry connections of z.
This was to be expected, given that there are about
as many exit connections as entry connections and we
consider all pairs of exit and entry connections. A more
detailed investigation reveals that computing Tt (z) for
the metropolitan areas on the lowest levels are by far
the most expensive cells. Figure 6b depicts similar
information for Ta (z). A first observation is that the
square of the interior border stops only is a lower bounds
on the running time. The interior of the cells has also
a significant influence on performance. For both transit
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Figure 7: Geo-rank showing the running times of the
tailored EA query

ra
n

ge

ac
ce

l. merge scan processed
[ms] [ms] conn /106

◦ ◦ — 4 173 46.2
◦ • 12 159 1.2
• • 6 72 0.6

Table 5: Running times for the accelerated algorithm
split up into the merge and scan phases and the number
of processed connections.

set types the same Berlin cell needs the most time.

6.5 Earliest Arrival Time and Local Queries.
We examine in Figure 7 the speedup of local queries.
We use a geo-rank instead of the common Dijkstra-rank
used for road networks. With the later it is unclear what
source time to use. Further, especially in rural areas,
travel times between neighboring villages can be huge.
A Dijkstra-rank [19] does not recognize these queries
as being local. A geo-rank picks a random source stop
and orders all other stops by geographical distance. It
runs queries towards the 2r-th stop. The geo-rank of
the query is r. Local queries are on average by a factor
of 6 faster than long distance connections. The figure
also shows that the running times have a lot of variance.
The largest outliers are queries where no journey exists.
With random source and target stops our query averages
at 8.66ms, which is about the running time of query with
maximum geo-rank. This is the case because picking
stops uniformly at random nearly never picks source
and target stops that are close.

6.6 Accelerated Profile Queries. We evaluate in
Table 5 the speedup of our technique. We assume
that a earliest arrival time query (≈ 8.66ms) was run
to compute a minimum travel time τ while the user

selects the time interval. As τ = +∞ is easy to test,
we assume that a journey exists. Journey pointers were
computed. “accel” indicates whether transit sets were
used. “range” indicates whether a source and target
time restricted the scan. The source time τs is chosen
at random and the target time τt is set to τs + 2τ .
Using transit connections achieves a speedup of 24. This
is less than the ratio of processed connections because
the relevant connection data is no longer adjacent in
memory. Restricting the time interval yields another
factor 2 totaling in a speedup of 49 over a CSA
profile baseline. Interestingly the number of processed
connections is still large, which explains why the scan
phase dominates.

6.7 Comparison with Transfer Pattern [1]. Fair
comparisons are hard because the problem formulations
and instances differ. Further their algorithm is heuristic.
However, no detailed error study was published making
the gain of optimality hard to quantify. The TE-
node ratio between our instance and their largest North
America instance is 0.72. The instances are roughly
comparable in size. Their processor is probably a bit
slower than ours but they publish no details. The fastest
(non-adjusted) reported running time for a one-to-one
earliest arrival variant is 7ms compared to our 9ms.
Because of the various differences in setup the numbers
can not directly be compared. We conclude that the
order of magnitude is the same. However, we have
provable correctness. Further there is a huge difference
in preprocessing time. We need 8 hours single core.
They report 2632h + 571h ≥ 4 months single core.

6.8 Comparison with RAPTOR [7]. In [9] we
compared RAPTOR with the non-accelerated CSA
and concluded that it is slower than our profile CSA
baseline. Further the London instance used in [9, 7]
has significantly more trips per route. A higher ratio
benefits RAPTOR. We expect the running time gap to
be larger. They compute full Pareto sets optimally.

7 Conclusion.

We showed that profile queries can be solved optimally
on country-sized timetable networks within 78ms. Our
algorithm optimizes realistic transfers and has reason-
able preprocessing times. We equate Transfer Pattern,
the fastest competitor, in terms of query times without
dropping optimality. But we are significantly better in
terms of preprocessing time.

Directions for future research include: (1) Eval-
uating the impact of other graph partitioner than
METIS [17], such as PUNCH [6] or KaHip [20]; (2) Bet-
ter algorithms to compute transfer transit sets in dense

136 Copyright © 2014.
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metropolitan areas; (3) Solving more complex queries
such as MEAT [9] or complex Pareto queries.
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