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Abstract
Quasi-threshold graphs are {C4, P4}-free graphs, i.e., they do not contain any cycle or path of four
nodes as an induced subgraph. We study the {C4, P4}-free editing problem, which is the problem
of finding a minimum number of edge insertions or deletions to transform an input graph into a
quasi-threshold graph. This problem is NP-hard but fixed-parameter tractable (FPT) in the number
of edits by using a branch-and-bound algorithm and admits a simple integer linear programming
formulation (ILP). Both methods are also applicable to the general F-free editing problem for
any finite set of graphs F . For the FPT algorithm, we introduce a fast heuristic for computing
high-quality lower bounds and an improved branching strategy. For the ILP, we engineer several
variants of row generation. We evaluate both methods for quasi-threshold editing on a large set
of protein similarity graphs. For most instances, our optimizations speed up the FPT algorithm
by one to three orders of magnitude. The running time of the ILP, that we solve using Gurobi,
becomes only slightly faster. With all optimizations, the FPT algorithm is slightly faster than the
ILP, even when listing all solutions. Additionally, we show that for almost all graphs, solutions of
the previously proposed quasi-threshold editing heuristic QTM are close to optimal.
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(d) A {C4, P4}-free graph.

Figure 1 A C4, a P4 and examples for graphs that are (not) {C4, P4}-free.

1 Introduction

We study graph edge editing problems. The distance between two graphs G and H, with the
same node set, is the minimum number of edge insertions or deletions needed to transform
G into H. Given a graph class C and a graph G, the editing problem asks for a graph H ∈ C
closest to G. The corresponding decision problem asks whether k edits are sufficient to
transform G into a graph H ∈ C. We study algorithms to solve editing problems exactly.

A graph H is an induced subgraph of a graph G, if there exists an injective mapping π
from the nodes of H onto the nodes of G such that there is an edge between two nodes of H,
if and only if there is an edge between the corresponding nodes in G. A graph G that does
not contain H as induced subgraph is H-free. Analogously, for a set of forbidden subgraphs
F , a graph G is F-free, if no graph H ∈ F is an induced subgraph of G.

We denote by P` a path graph with ` nodes. Similarly, C` denotes a cycle graph with
` nodes. Figures 1a and 1b depict a C4 and a P4. The graph depicted in Figure 1c is not
{C4, P4}-free as the nodes (a, b, d, e) form an induced C4. In contrast, the graph depicted
in Figure 1d is {C4, P4}-free. The nodes (a, b, e, c) form a P4, however, as there is an edge
between a and e, the subgraph is not an induced subgraph.

While the theoretical part of our study considers any F-free edge editing problem for
a finite set of subgraphs F , our experimental study considers {C4, P4}-free graphs. These
are also called quasi-threshold or trivially perfect graphs. Quasi-threshold editing has
applications in detecting communities in social friendship networks. Nastos and Gao [23]
detect communities in a graph G by computing a closest quasi-threshold graph H of G. Each
connected component in H corresponds to a community in G.

For many choices of F , F -free editing is NP-hard, in particular for F = {C4, P4} [23]. The
F -free edge editing problem is fixed-parameter tractable (FPT) in the number of edits k [7].
This proof directly leads to a branch-and-bound algorithm, see Section 4. For {C4, P4}-free
edge editing, it has a running time of O(6k · (n+m)), where n and m are the number of nodes
and edges. Unfortunately, social networks typically require a large number of edits [6], which
makes plain FPT algorithms impracticable. Therefore, in [23] and [6], quasi-threshold editing
heuristics have been introduced for detecting communities in social friendship networks.
However, as both approaches are heuristics, they might detect communities that are different
from those defined by the model that assumes an optimal solution. Our goal is to improve
the running time of exact {C4, P4}-free editing in practice in order to make it feasible at
least for small networks. This allows us to study exact solutions of the community detection
problem and to verify the quality of heuristics.

1.1 Related Work
For the special case of {C4, P4}-free edge deletion, where only edge deletion operations are
allowed, optimized branching rules have been proposed that reduce the running time of
the trivial algorithm from O(4k · (n + m)) to O(2.42k · (n + m)) [19]. To the best of our
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knowledge, for {C4, P4}-free editing, no improved branching rules have been proposed so far.
A polynomial kernel of size O(k7) for {C4, P4}-free graphs has been proposed [11], which is
too large for most practical applications.

A frequently considered problem is {P3}-free editing, better known as cluster editing [2].
Early approaches for cluster editing include a linear programming formulation with cutting
planes that are incrementally added (in batches of a few hundred constraints) [14]. Later,
exact algorithms based on integer linear programming as well as kernelization and more
efficient FPT algorithms have been considered [4]. In [16], the authors combine the FPT
algorithm with kernelization as well as upper and lower bounds. Editing to {P4}-free graphs
has been considered in phylogenomics [17] using a simple ILP-based approach.

In a bachelor thesis [5], {P5}-free editing has been considered for community detection.
They apply lower bounds, data reduction rules and rules for disallowing certain edits.

1.2 Our Contribution
In this paper, we compare two different methods for solving F -free editing problems. The first
is a branch-and-bound FPT algorithm while the second is an ILP. For the FPT algorithm, we
propose a novel lower bound algorithm based on local search heuristics for independent sets
as well as an improved branching strategy. Additionally, we parallelize our implementation.
For the ILP, we engineer several variants of row generation. We assess the running time
improvements of the different optimizations for quasi-threshold editing on a large benchmark
set of 716 graphs that are connected components of a protein similarity graph. This benchmark
set has previously been used to evaluate cluster editing algorithms [24, 3]. On 75% of the
instances, our improved bounds and optimized branching choices yield speedups of one to
three orders of magnitude for the FPT algorithm. For the ILP, we are only able to achieve
small speedups. With all optimizations, in the median, the FPT algorithm is twice as fast
as the ILP, even when enumerating all possible optimal solutions exactly once. Compared
with the parallel execution of Gurobi [15], the FPT algorithm achieves better speedups.
Additionally, we evaluate an LP relaxation as lower bound. We prove that its bounds are at
least as good as our local search bounds. In our experiments, however, it is too slow to be
competitive.

Further, we compare our exact solutions with heuristic solutions found by QTM [6].
It turns out that many heuristic solutions are exact and all but one of them are close to
the exact solution. Additionally, we are able to solve four out of the five social networks
considered in [23], of which only one was solved previously [21].

1.3 Outline
We start by introducing the preliminaries in Section 2. We describe the ILP formulation
and the optimizations we apply to it in Section 3. In Section 4, we then introduce the
branch-and-bound FPT algorithm including existing and novel optimizations. In Section 5,
we present our experimental setup and evaluation. We conclude in Section 6.

2 Preliminaries

All graphs in this paper are undirected, unweighted, and finite. Further, no graph has
self-loops or multi-edges. A graph G = (VG, EG) consists of n := |VG| nodes and m := |EG|
undirected edges. By EG, we denote the complement of the edges. In the following, k denotes
the maximum number of edits.

SEA 2020
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3 Integer Linear Programming

In this section, we describe an ILP formulation for F -free editing that is based on an existing
formulation for cluster editing [14]. Further, we introduce our optimizations based on row
generation and modified constraints to make the ILP practical for small instances.

For every node pair u, v ∈
(
VG

2
)
we introduce a variable xuv ∈ {0, 1} which is 1 if the

node pair is an edge in the edited graph and 0 otherwise. We add constraints to ensure that
no forbidden subgraph H ∈ F can be induced in G via an injective node mapping π:

∀H ∈ F ,∀π : VH ↪→ VG :
∑

{u,v}∈EH

(1− xπ(u)π(v)) +
∑

{u,v}∈EH

xπ(u)π(v) ≥ 1 (1)

The objective minimizes the number of edits:

min
∑

{u,v}∈EG

(1− xuv) +
∑

{u,v}∈EG

xuv (2)

3.1 Row Generation
Generating all of the above-mentioned constraints is infeasible, even for small instances. Row
generation (also called lazy constraints) aims to speed up ILP solvers by starting with a
small subset of the constraints and subsequently adding constraints that are violated in
intermediate solutions. We start with constraints for forbidden subgraphs in the input graph.
In our experiments, we consider two options to add constraints violated in an intermediate
solution: adding either all violated constraints or only one.

The ILP solver uses LP relaxations to prune its search. These can be strengthened by
adding constraints from Equation 1 that are violated by the LP relaxation. We generate
constraints in three steps. First, we consider each node pair {u, v} for which the relaxation
solution has a value different from the input graph. We edit it, then enumerate the forbidden
subgraph embeddings containing u and v, add the constraint that is most violated (i.e.,
whose left side is furthest below 1) and then revert the edit. Ties are broken uniformly at
random. Second, we apply the same procedure to the best heuristic solution found so far.
Third, we round the LP solution, i.e., an edge exists iff the corresponding variable is greater
than 0.5. We then list forbidden subgraph embeddings in this rounded solution and add the
corresponding most violated constraint if there is any. The listing skips forbidden subgraphs
for which the corresponding constraint has already been added.

3.2 Optimizing Constraints for {C4, P4}-free Editing
If one forbidden subgraph can be transformed into another by a single edit, we can omit a
node pair from the constraint for this subgraph. This is similar to the optimization described
in Section 4.2. For a P4, this is the node pair consisting of the two degree-one nodes. For a
C4, we can omit any one of its four edges. We always consider all four possibilities, and in
the initial constraint generation as well as the basic row generation variant we add all of
them. With this optimization, the constraints for C4s and P4s are identical.

We can also formulate a constraint for a C4 that explicitly models that two deletions or
one insertion are required:

∀(u1, u2, u3, u4) ∈ V 4
G : 0.5 ·

4∑
i=1

(1− xuiui+1) + xu1u3 + xu2u4 ≥ 1 (3)
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4 The FPT Branch-and-Bound Algorithm

The FPT algorithm [7] is a branch-and-bound algorithm. For a given maximum number of
edits k, it either reports that no solution exists or returns a set of k edits. It works as follows:
Find a forbidden subgraph H and branch on all possible edits in H. As H is induced, only
edits in H can destroy it and thus one of these edits must be part of the solution. The
algorithm is then recursively called for each branch with k − 1 remaining edits.

Denote by p the maximum number of nodes in a forbidden subgraph. Finding H can be
done trivially in time O(np) by enumerating all subgraphs of the required size. For specific
sets of forbidden subgraphs, such as {C4, P4}, this can be improved to O(n+m) [8, 6].

Every pair of nodes in H is a valid edit. The branching factor is therefore p · (p− 1)/2.
The depth of the recursion is bounded by the maximum number of edits k. The total running
time is therefore in O(p2k ·np) for general families of forbidden subgraphs. For quasi-threshold
editing the running time is O(6k · (n + m)). This can be improved to O(5k · (n + m)) by
applying the optimization described in Section 4.2.

For finding the minimum number of edits kopt, the algorithm needs to be executed for
increasing values of k until a solution is returned. For a branching factor of 2 or larger, the
running time of all k < kopt together is at most the running time for kopt. Thus the total
running time is dominated by the running time for kopt.

In the following, we describe several optimizations to reduce the number of explored
branches in practice. We describe existing techniques for avoiding redundant exploration of
branches (Section 4.1), for skipping certain branches (Section 4.2) as well as lower bounds
(Section 4.3). We introduce a novel local search lower bound (Section 4.4), optimized branching
choices (Section 4.5), early pruning of branches (Section 4.6) and a simple parallelization
(Section 4.7). The appendix of the full version [13] provides in-depth implementation details.

4.1 Avoiding Redundancy
Damaschke [9] proposes to block node pairs to list every solution exactly once. When
spawning a search tree node x through editing a node pair, it is neither useful to undo that
edit in the sub-search-tree rooted at x, nor is it useful to perform the edit in sibling search
trees. While this has been introduced for cluster editing, the technique can be applied to
arbitrary F -free editing problems. We explain this technique in detail in the full version [13].

4.2 Skip Forbidden Subgraph Conversion
I Lemma 1. If each forbidden subgraph A ∈ F can be transformed into another one B ∈ F
by one edit, the branching factor of the FPT algorithm can be reduced from

(
p
2
)

to
(
p
2
)
− 1.

There is an edit that transforms a P4 into a C4. Clearly, this edit can be skipped. Further,
there are four edge deletions that transform a C4 into a P4. One of these can be skipped [22].
We can choose which one, but as any pair of two edge deletions eliminates the forbidden
subgraph, skipping more than one of them might eliminate a necessary branch. Since the
branching factor is reduced, this decreases the worst-case running time from O(6k · (n+m))
to O(5k · (n+m)) for quasi-threshold editing.

4.3 Existing Lower Bound Approaches
At each branching node, we have a certain number k of edits left. If we can show that the
graph needs at least k + 1 edits, we do not need to explore further branches below that node.
Lower bounds have been used for cluster editing [4, 16] and {P5}-free editing [5]. Commonly,
they are based on an LP relaxation of the ILP [16], or on a disjoint packing argument [5, 16].

SEA 2020
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Subgraph Packing. A node-pair disjoint subgraph packing P is a set of induced forbidden
subgraphs that do not share a node pair. As no edit can eliminate more than one subgraph,
|P | is a lower bound on the number of edits required. Taking the previously mentioned
optimizations into account, we can include more subgraphs in P by allowing to share blocked
node pairs, as they cannot be edited. Further, for each forbidden subgraph a node pair that
transforms it into another forbidden subgraph may be shared. In the case of F = {C4, P4},
the pair of degree-1 nodes of an induced P4 can be shared. For C4, we can choose any edge
to share, but it remains the same as long as the C4 is in the packing.

Finding such a packing can be modeled as an independent set problem [16]. The forbidden
subgraphs are nodes and every pair of forbidden subgraphs that shares a non-shareable node
pair is connected by an edge. A natural greedy heuristic for independent sets is to iteratively
add the node that has the smallest degree and then remove all its neighbors from the graph.
This can be implemented in linear time by splitting nodes into buckets according to their
degree (see e.g. [1]). This heuristic has also been used to calculate lower bounds for cluster
editing [16]. We are not aware of complexity results of the independent set problem on this
special graph class.

In our experiments, we evaluate three bounds based on subgraph packing: 1) A basic
bound that iteratively adds subgraphs to the packing as they are found. 2) An incremental
version of 1) that updates the packing as the graph is modified in the branch-and-bound
algorithm. After applying an edit, we remove the subgraph that contains the edited node
pair. After both editing and blocking, we enumerate and add subgraphs to the bound until
it is maximal. 3) A greedy bound based on the minimum degree heuristic. In contrast to the
first two, this requires storing all forbidden subgraphs. To avoid this in trivial cases, we first
apply 2) to the previous bound and only compute a new packing if this fails to prune the
branch.

LP relaxation. The optimal solution of the LP relaxation provided in Section 3 is an upper
bound for the node-pair-disjoint packing problem. This can be shown by considering an LP
with just the constraints that correspond to the subgraphs in a packing. Each subgraph
in the packing is a node-induced subgraph of G. Therefore, the terms on the left side of
its corresponding constraint appear in the objective function exactly as they appear in the
constraint, confer Equations 1 and 2. Each term in the objective function is at least 0, and
each group of terms corresponding to a fulfilled constraint sums to at least 1. Since the
packing is node-pair disjoint, the constraints do not share any variables and thus groups do
not overlap. Therefore, the objective value is at least the number of subgraphs in the packing.
Adding more constraints can only increase the objective and thus improve the bound. We
can also model blocked node pairs by replacing the corresponding variable by its value. The
variables in the constraints are then disjoint again and thus the same argument applies.

4.4 Local Search Lower Bound
We propose a lower bound based on a subgraph packing that is computed using an adaptation
of the 2-improvements local search heuristic [1] for independent sets. Our local search starts
with an initial packing and works in rounds. In each round, it iterates over all forbidden
subgraphs in the packing and tries to replace one by two forbidden subgraphs. If this is not
possible, it tries to replace one by one. Preliminary experiments have shown that choosing
this replacement from those candidates which cover the fewest other forbidden subgraphs
leads to significantly higher bounds than considering all candidates. We also found that
using this strategy only 70% of the time and otherwise choosing a random replacement
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is even better. We repeat this procedure until in five consecutive rounds only one-by-one
replacements were found. We also terminate the search if the packing remains completely
unchanged in a round, or if the packing is large enough to prune the current branch in
the search tree. To make this efficient, we approximate the number of forbidden subgraphs
that are covered by a certain forbidden subgraph H, by adding up the number of forbidden
subgraphs each node pair of H is part of. For the latter we can efficiently maintain counters.

The initial packing is computed with the basic greedy bound. For recursive calls, we
update the previous bound as discussed above, before employing local search.

4.5 Branch on Most Useful Node Pairs

We can choose any forbidden subgraph for branching on its possible edits, e.g., the first
we find. If there is a forbidden subgraph with only one non-blocked node pair, we choose
it, as this will lead to just one recursive call. Otherwise, the first node pair we try to edit
should ideally lead to a solution, or blocking the edit should prune the search. We propose to
prefer forbidden subgraphs whose non-blocked node pairs are part of many other forbidden
subgraphs. Then, a single edit can eliminate many forbidden subgraphs (possibly leading to
a solution) and blocking the node pairs allows adding many subgraphs to the lower bound.
For each forbidden subgraph, we sort its non-blocked node pairs in decreasing order by
the number of forbidden subgraphs that contain the respective node pair. The edits of the
selected forbidden subgraph are also tried in this order. We select the subgraph to branch
on using a lexicographical ordering on these counts. The last node pair is excluded, as there
are no branches left to prune. Additionally, if two subgraphs have identical count sequences
(up to the length of the shorter one), we prefer the subgraph with the shorter sequence.

4.6 Prune Branches Early

Normally, we attempt to prune a branch after applying an edit and descending into recursion.
With the optimization from Section 4.1, the edited node pair of a recursive call remains
blocked after returning from recursion. We update the lower bound to consider this blocked
node pair. If the new lower bound already exceeds the remaining number of edits, we can
directly prune all subsequent recursive calls, instead of pruning them individually. There
are two cases for which we skip the bound update to save running time: If there is only one
subsequent recursive call, as we would only prune a single branch, and if the blocked node
pair is only part of a single forbidden subgraph, as it cannot yield a better lower bound.

4.7 Parallelization

The algorithm can be parallelized by letting different cores explore different branches. Due to
our optimizations, not every branch needs the same running time. Therefore, just executing
the first branches in parallel is not scalable. Instead, we use a simple work stealing algorithm.
Whenever a thread has fully explored its branch, it steals a branch on the highest available
level from another thread and further explores it.

SEA 2020
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5 Experimental Evaluation

In the appendix of the full version [13] we discuss implementation details. The C++ source
code1 of all discussed variants is available online. We use the C++ interface of Gurobi [15] to
solve ILPs and LPs. We evaluate our algorithms on a set of 3964 graphs that are connected
components of the COG protein similarity data2 that has already been used for the evaluation
of cluster editing algorithms [24, 3]. The dataset consists of a similarity matrix for each graph.
We treat all non-negative scores as edges. Unless stated otherwise, we restrict our evaluation
to the 716 graphs that require at least 20 edits. On the 3248 excluded graphs, the maximum
running time is less than 0.43 seconds for the FPT algorithm using our local search lower
bound. Of these graphs, 1666 require no edits at all. Further, we evaluate our algorithms on
a set of 5 small social networks that were already considered by Nastos and Gao [23], namely
karate [25], grass_web [10], lesmis [18], dolphins [20], and football [12].

All experiments were performed on systems with two 8-core Intel Xeon E5-2670 (Sandy
Bridge) processors and 64 GB RAM. We set a global time limit of 1000 seconds. Experiments
comparing just FPT variants were executed on 16 different node orders, running 16 node
orders in parallel. Due to the memory requirements of Gurobi, this is not feasible for the ILP
and the LP bound. For these variants, we run just one instance at a time. For experiments
involving ILP variants, we also limit the experiments to 4 node orders, and, for better
comparability, we run one instance at a time also for the FPT comparison runs in Figure 4.
By default, all algorithms terminate at the first found solution, as the ILP is unable to
enumerate solutions. Variants with the suffix -All enumerate all solutions. Further, variants
with the suffix -MT are parallelized using 16 cores.

5.1 Variants of the FPT Algorithm
The baseline branching strategy -F uses the first found forbidden subgraph. Our Most
branching strategy from Section 4.5 is denoted by -M, additional early pruning by -MP. The
basic greedy bound is denoted by -G, the incremental update bound by -U, the min-degree
heuristic by -MD, our local search lower bound by -LS, and LP relaxations by -LP. The
comparison includes the nine variants FPT-G-F-All, FPT-G-MP-All, FPT-U-MP-All, FPT-MD-
F-All, FPT-MD-MP-All, FPT-LP-MP-All, FPT-LS-F-All, FPT-LS-M-All and FPT-LS-MP-All.

Figure 2 shows how many of the COG dataset instances can be solved within a certain
time limit and with a certain number of recursive calls – added over all k’s. Additional lower
bound calls due to -MP count extra. An instance is a single node id permutation of a graph,
i.e., every graph is counted 16 times. Of the 716 graphs we are able to solve 547 within the
1000 second time limit. Below, we also compare calls and running times per instances.

For comparing branching strategies, we fix the local search algorithm -LS as the lower
bound. The median factor of additional calls needed by -M over -MP is 1.9 and by -F over
-MP is 3.36, restricted to instances solved by both algorithms. While the median speedup of
-MP over -F is 3.11, it is just 1.06 over -M. On 5% of the instances, the speedup is at least
56.62 and 1.24, respectively. This shows that for -M the improvement in the number of calls
directly leads to similar running time improvements, while early pruning just reduces calls.

For comparing lower bound algorithms, we fix -MP as the branching strategy. There is
an inherent trade-off between the number of recursive calls and the time spent per call, with

1 https://github.com/kit-algo/fpt-editing
2 https://bio.informatik.uni-jena.de/data/#cluster_editing_data

https://github.com/kit-algo/fpt-editing
https://bio.informatik.uni-jena.de/data/#cluster_editing_data


L. Gottesbüren, M. Hamann, P. Schoch, B. Strasser, D. Wagner, and S. Zühlsdorf 10:9

10−3 10−2 10−1 100 101 102 103

Total Time [s]

0

2000

4000

6000

8000

10000

So
lve

d
(G

ra
ph

s
×

No
de

Id
Pe

rm
ut

at
io

ns
)

102 103 104 105 106 107 108

Calls

FPT-G-F-All
FPT-G-MP-All

FPT-U-MP-All
FPT-MD-F-All

FPT-MD-MP-All
FPT-LS-F-All

FPT-LS-M-All
FPT-LS-MP-All

FPT-LP-MP-All

Figure 2 Number of permutations of graphs of the COG dataset that require at least 20 edits
and can be solved within a certain total running time / with a certain number of recursive calls
(and extra lower bound updates for -MP). The horizontal black line indicates the total number of
graphs and node permutations that require 20 or more edits, including unsolved instances.

a sweet spot that gives the best overall running time. The basic greedy bounds need 10 to
24 times as many calls as the other bounds in the median. The recomputed greedy bound -G
is slightly better than the updated one -U, -LP is the best, followed by -LS and -MD.

Nonetheless, for very small time limits, -U solves the highest number of instances. For
larger time limits, reducing the number of calls pays off, though not at any cost. The median
speedup of min-degree over the LP is 2.16 while needing 47% more calls in the median. Local
search avoids their substantial memory overhead and spends significantly less time per call
than both. It needs 83% of the calls of -MD while being a factor of 12.36 faster in the median.
It is never slower, and on 5% of the instances even more than 137 times faster than -MD.

Comparing the state-of-the-art FPT-MD-F-All algorithm to our FPT-LS-MP-All algorithm,
we need 4.33 times less calls and are 46.06 times faster in the median. We are never slower,
on 75% of the instances more than 16 times and on 5% of the instances more than 1044
times faster. In conclusion, our local search lower bound gives high-quality bounds while
being fast. Our branching rules reduce the running time by another small factor while early
pruning mainly reduces the number of calls. Overall, we achieve a speedup of one to three
orders of magnitude over the state-of-the-art.

5.2 Parallelization

The left part of Figure 3 reports the speedup of FPT-LS-MP-All-MT over its sequential
counterpart FPT-LS-MP-All, the sequentially fastest variant on the COG dataset. We show
the speedup with 1, 2, 4, 8 and 16 cores in comparison to the number of recursive calls and
lower bound calculations. For each graph and permutation, we plot the speedup on the
last value of k for which the sequential version of the algorithm terminated within the time
limit. With only few recursive calls we cannot expect a good speedup. For a high number of
recursive calls, FPT-LS-MP-All-MT achieves almost perfect speedup for all numbers of cores
on many graphs. As the algorithm is executed with increasing values of k, for some graphs
only the last value of k needs a high number of calls and thus the overall speedup is not
perfect even though in sum the number of calls is high.
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Figure 3 Speedup of FPT-LS-M-All-MT and comparison of the different ILP variants on 16 (left)
and 4 (right) node id permutations of the 716 COG graphs that require at least 20 edits.
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Figure 4 Comparison of the ILP to the FPT algorithm on 4 node id permutations of the 716
COG graphs that require at least 20 edits.

5.3 Variants of the ILP

Figure 3 (right) shows the impact of the different optimizations on the ILP, when enabled
one after another. We denote adding only one violated constraint by -S, adding constraints
during relaxations by -R, and specialized C4 constraints by -C4. The baseline is ILP-B, where
row generation always adds all violated constraints for intermediate solutions.

In the median, ILP-S is just 5% faster than ILP-B. While on 95% of the instances it is
at most 20% slower, it is more than 44 times faster on 5% of them, which explains the gap
in Figure 3. ILP-S-R is not faster in the median, but on 95% of the instances at most 12%
slower and on 5% it is at least 73% faster. The C4 constraints make the ILP 12% faster in
the median, at most 26% slower on 95% and at least 95% faster on 5% of the instances. With
all optimizations, the ILP solves 568 graphs. We also tried providing a heuristic solution
from QTM [6] to Gurobi, but the improvement was even smaller and disappeared in parallel.

Figure 4 compares the best ILP and FPT algorithms with and without -MT in terms of
running time and recursive calls. For the FPT algorithm, stopping at the first solution is
not slower on 95%, more than 52% faster on 50% and more than 3 times faster on 5% of
the instances. Multi-threading incurs a measurable overhead. Compared to FPT-LS-MP-All,
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Figure 5 Comparison of heuristic solutions of QTM and the exact number of edits k for solved
graphs (left) or the best lower bound for unsolved graphs (right) achieved by the FPT algorithm or
the ILP. For readability, we exclude one solved graph at k = 64, where QTM needed 202 edits.

FPT-LS-MP-All-MT is at most 16% slower on 95%, 78% faster in the median and more than
12 times faster on 5% of the instances. When stopping at the first solution, this decreases to
24% slower, 1% faster and 10 times faster, as more branches that do not lead to a solution are
explored in multi-threaded mode. FPT-LS-MP-MT is still 4% faster than FPT-LS-MP-All-MT
in the median, at most 3% slower on 95% and at least 68% faster on 5% of the instances.

The parallel ILP is at most 5% slower on 95%, as fast in the median and more than 52%
faster on 5% of the instances than the sequential ILP. Thus, the parallelization helps the
FPT algorithm more than the ILP. A likely cause is that Gurobi needs much less search
nodes than the FPT algorithm which offer less potential for parallelism – on 50% of the
instances at least 185 times less, and on many graphs even just one or two, see Figure 4.

The speedup of FPT-LS-MP over ILP-S-R-C4 is at least 0.59 on 95%, 3.25 in the median
and at least 10.72 on 5% of the instances. For FPT-LS-MP-All, this decreases to 0.29, 2.10
and 7.02. In parallel, the speedups are 1.09, 3.41 and 16.45 for all solutions, and 1.34, 3.67
and 18.14 for the first solution. Single-threaded, the ILP solves more instances within 1000
seconds than the FPT algorithm, indicating that for difficult instances better bounds are
more important. Overall, the FPT algorithm is often faster than the ILP, in particular in
parallel and even when listing all solutions.

5.4 Comparison to QTM
Figure 5 compares the results of the heuristic Quasi-Threshold Mover (QTM) [6] with exact
results for solved and the best lower bounds for unsolved graphs. We use the maximum
value of k achieved for any permutation by FPT-LS-MP-MT and by ILP-S-R-C4 with and
without -MT. If any of the algorithms solved the graph, we list it in the left part, otherwise
in the right part. For QTM, we report the minimum k that QTM found over 16 runs. Again,
the plot excludes 3248 graphs that require less than 20 edits. Of those, QTM solved 3172
exactly, 56 with offset 1, 15 with offset 2 and 5 with offset 3. Of the remaining graphs, 588
are solved and 128 are unsolved. Of the solved graphs, QTM solved 319 graphs exactly. For
none of the unsolved graphs, QTM matches the lower bound. For 95% of the 716 graphs,
QTM needs at most 1.22 times the edits of the exact solution or the lower bound.

SEA 2020



10:12 Engineering Exact Quasi-Threshold Editing

Table 1 Overview of the social network graphs. Using the algorithms FPT-LS-MP and ILP-S-R-C4
with 1 and 16 cores, we report the maximum k that finished within 1000 seconds, and the minimum
time over all permutations that is needed to find the first solution. In the case of football, we
report the time needed to show that there is no solution with that k.

FPT ILP
1 core 16 cores 1 core 16 cores

Graph n m k Time [s] k Time [s] k Time [s] k Time [s]

karate 34 78 21 0.01 21 0.01 21 0.02 21 0.03
lesmis 77 254 60 0.17 60 0.13 60 0.96 60 0.97
grass_web 75 113 34 1.81 34 0.21 34 2.91 34 2.83
dolphins 62 159 70 126.54 70 18.57 70 23.81 70 12.10

football 115 613 223 929.55 228 649.94 235 1000.01 237 1000.05

5.5 Social Network Instances
Table 1 shows an overview of the social networks with results for FPT-LS-MP and ILP-S-R-C4.
Both solve karate and lesmis in less than a second, and grass_web within 3 seconds, with
the FPT algorithm being faster. Even though lesmis is both larger than grass_web and
requires 60 edits instead of 34, both algorithms are significantly slower on grass_web. This
shows that their performance depends on the specific structure of the graph and not just the
graph size and k. For dolphins, the ILP is faster than the FPT algorithm. For all graphs,
the FPT algorithm scales better with the number of cores. None of the algorithms can solve
the football network. We show that there is no solution for k ≤ 223, k ≤ 228 using the
FPT algorithm with 1 or 16 cores respectively, and k ≤ 235, k ≤ 237 using the ILP with 1
or 16 cores respectively. The previously best known upper bound was 251, computed with
QTM [6] in 2.5ms. In 1000 seconds, the ILP shows a new upper bound of 250. For the
smallest three social networks, we verify that the best heuristic solutions in [6] are exact.
QTM needs 72 edits on dolphins, whereas 70 edits are optimal. The appendix of the full
version [13] contains a detailed analysis of the solution space with a focus on the community
detection application.

6 Conclusion

We have introduced optimizations for two different approaches to solving any F-free edge
editing problem. We evaluate our optimizations for the special case of quasi-threshold editing
on a set of 716 protein interaction graphs. For the first approach, the FPT algorithm, we
show that the combination of good lower bounds with careful selection of branches allows to
reduce the running time by one to three orders of magnitude for 75% of the instances. For
the second approach, an ILP, we evaluate several variants of row generation and show that
they achieve small speedups. We show that the FPT algorithm is slightly faster than the
ILP, with a larger margin in parallel, and it can easily enumerate all optimal solutions. For
the heuristic editing algorithm QTM, we show that on 95% of the instances, it needs at most
22% more edits than our exact solutions or lower bounds indicate.

Comparing the structure of exact vs. heuristic solutions might give further insights how
to improve heuristics. Exact FPT algorithms could be further improved by better bounds,
possibly based on LP relaxations. As the COG benchmark set actually contains edit costs,
an extension of our optimizations to the weighted editing problem could be investigated.
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