
Fast Quasi-Threshold Editing�

Ulrik Brandes1, Michael Hamann2, Ben Strasser2, and Dorothea Wagner2

1 Computer and Information Science, University of Konstanz, Germany
ulrik.brandes@uni-konstanz.de

2 Faculty of Informatics, Karlsruhe Institute of Technology, Germany
{michael.hamann,strasser,dorothea.wagner}@kit.edu

Abstract. We introduce Quasi-Threshold Mover (QTM), an algorithm
to solve the quasi-threshold (also called trivially perfect) graph editing
problem with a minimum number of edge insertions and deletions. Given
a graph it computes a quasi-threshold graph which is close in terms of
edit count, but not necessarily closest as this edit problem is NP-hard.
We present an extensive experimental study, in which we show that QTM
performs well in practice and is the first heuristic that is able to scale to
large real-world graphs in practice. As a side result we further present a
simple linear-time algorithm for the quasi-threshold recognition problem.

1 Introduction

Fig. 1. Quasi-thres.
graph with thick
skeleton, grey root
and dashed transitive
closure.

Quasi-Threshold graphs, also known as trivially perfect
graphs, are defined as the P4- and C4-free graphs, i.e., the
graphs that do not contain a path or cycle of length 4 as
node-induced subgraph [20]. They can also be character-
ized as the transitive closure of rooted forests [19], as illus-
trated in Fig. 1. These forests can be seen as skeletons of
quasi-threshold graphs. Further a constructive character-
ization exists: Quasi-threshold graphs are the graphs that
are closed under disjoint union and the addition of isolated
nodes and nodes connected to every existing node [20].

Linear time quasi-threshold recognition algorithms
were proposed in [20] and in [9]. Both construct a skeleton
if the graph is a quasi-threshold graph. Further, [9] also
finds a C4 or P4 if the graph is no quasi-threshold graph.

Nastos and Gao [14] observed that components of quasi-threshold graphs have
many features in common with the informally defined notion of communities in
social networks. They propose to find a quasi-threshold graph that is close to a
given graph in terms of edge edit distance in order to detect the communities
of that graph. Motivated by their insights we study the quasi-threshold graph
editing problem in this paper. Given a graph G = (V,E) we want to find a quasi-
threshold graph G′ = (V,E′) which is closest to G, i.e., we want to minimize the
number k of edges in the symmetric difference of E and E′. Figure 2 illustrates

� This work was supported by the DFG under grants BR 2158/6-1, WA 654/22-1, and
BR 2158/11-1.

c© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 251–262, 2015.
DOI: 10.1007/978-3-662-48350-3_22

252 U. Brandes et al.

Fig. 2. Edit example with
solid input edges, dashed in-
serted edges, a crossed deleted
edge, a thick skeleton with
grey root.

an edit example. Unfortunately, the quasi-
threshold graph editing problem is NP-hard [14].
However, the problem is fixed parameter tractable
(FPT) in k as it is defined using forbidden sub-
graphs [7]. A basic bounded search tree algo-
rithm which tries every of the 6 possible edits
of a forbidden subgraph has a running time in
O(6k · (|V | + |E|)). In [11] a polynomial kernel
of size O(k7) was introduced. Unfortunately, our
experiments show that real-world social networks
have a prohibitively large amount of edits. We
prove lower bounds on real-world graphs for k on
the scale of 104 and 105. A purely FPT-based al-
gorithm with the number of edits as parameter
can thus not scale in practice. The only heuristic

we are aware of was introduced by Nastos and Gao [14]. It greedily picks edits
that result in the largest decrease in the number of induced C4 and P4 in the
graph. Unfortunately, it examines all Θ(|V |2) possible edits in each step and thus
needs Ω(k · |V |2) running time. Even though this running time is polynomial it
is still prohibitive for large graphs. In this paper we fill this gap by introducing
Quasi-Threshold Mover (QTM), the first scalable quasi-threshold editing heuris-
tic. The final aim of our research is to determine whether quasi-threshold editing
is a useful community detection algorithm. Designing an algorithm able to solve
the quasi-threshold editing problem on large real-world graphs is a first step in
this direction.

1.1 Our Contribution

Our main contribution is Quasi-Threshold Mover (QTM), a scalable quasi-
threshold editing algorithm. We provide an extensive experimental evaluation
on synthetic as well as a variety of real-world graphs. We further propose a
simplified certifying quasi-threshold recognition algorithm. QTM works in two
phases: An initial skeleton forest is constructed by a variant of our recognition
algorithm, and then refined by moving one node at a time to reduce the num-
ber of edits required. The running time of the first phase is dominated by the
time needed to count the number of triangles per edge. The best current triangle
counting algorithms run in O(|E|α(G)) [8,15] time, where α(G) is the arboricity.
These algorithms are efficient and scalable in practice on the considered graphs.
One round of the second phase needs O(|V | + |E| logΔ) time, where Δ is the
maximum degree. We show that four rounds are enough to achieve good results.

1.2 Outline

Our paper is organized as follows: We begin by describing how we compute lower
bounds on the number of edits. We then introduce the simplified recognition
algorithm and the computation of the initial skeleton. The main algorithm is

Fast Quasi-Threshold Editing 253

described in Sect. 4. The remainder of the paper is dedicated to the experimental
evaluation. An extended version of this paper is available on arXiv [6].

1.3 Preliminaries

We consider simple, undirected graphs G = (V,E) with n = |V | nodes and
m = |E| edges. For v ∈ V let N(v) be the adjacent nodes of v. Let d(v) := |N(v)|
for v ∈ V be the degree of v and Δ the maximum degree in G. Whenever we
consider a skeleton forest, we denote by p(u) the parent of a node u.

2 Lower Bounds

A lot of previous research has focused on FPT-based algorithms. To show that no
purely FPT-based algorithm parameterized in the number of edits can solve the
problem we compute lower bounds on the number of edits required for real-world
graphs. The lower bounds used by us are far from tight. However, the bounds are
large enough to show that any algorithm with a running time superpolynomial
in k can not scale.

To edit a graph we must destroy all forbidden subgraphs H . For quasi-
threshold editing H is either a P4 or a C4. This leads to the following basic
algorithm: Find forbidden subgraph H , increase the lower bound, remove all
nodes of H , repeat. This is correct as at least one edit incident to H is neces-
sary. If multiple edits are needed then accounting only for one is a lower bound.
We can optimize this algorithm by observing that not all nodes of H have to be
removed. If H is a P4 with the structure A−B −C −D it is enough to remove
the two central nodes B and C. If H is a C4 with nodes A, B, C, and D then it
is enough to remove two adjacent nodes. Denote by B and C the removed nodes.
This optimization is correct if at least one edit incident to B or C is needed.
Regardless of whether H is a P4 or a C4 the only edit not incident to B or C is
inserting or deleting {A,D}. However, this edit only transforms a P4 into a C4

or vice versa. A subsequent edit incident to B or C is thus necessary.
H can be found using the recognition algorithm. However, the resulting run-

ning time of O(k(n + m)) does not scale to the large graphs. In the extended
version [6] we describe a running time optimization to accelerate computations.

3 Linear Recognition and Initial Editing

The first linear time recognition algorithm for quasi-threshold graphs was pro-
posed in [20]. In [9], a linear time certifying recognition algorithm based on
lexicographic breadth first search was presented. However, as the authors note,
sorted node partitions and linked lists are needed, which result in large con-
stants behind the big-O. We simplify their algorithm to only require arrays but
still provide negative and positive certificates. Further we only need to sort the
nodes once to iterate over them by decreasing degree. Our algorithm constructs

254 U. Brandes et al.

the forest skeleton of a graph G. If it succeeds G is a quasi-threshold graph and
outputs for each node v a parent node p(v). If it fails it outputs a forbidden
subgraph H .

To simplify our algorithm we start by adding a super node r to G that is
connected to every node and obtain G′. G is a quasi-threshold graph if and
only if G′ is one. As G′ is connected its skeleton is a tree. A core observation is
that higher nodes in the tree must have higher degrees, i.e., d(v) ≤ d(p(v)). We
therefore know that r must be the root of the tree. Initially we set p(u) = r for
every node u. We process all remaining nodes ordered decreasingly by degree.
Once a node is processed its position in the tree is fixed. Denote by u the node
that should be processed next. We iterate over all non-processed neighbors v of u
and check whether p(u) = p(v) holds and afterwards set p(v) to u. If p(u) = p(v)
never fails then G is a quasi-threshold graph as for every node x (except r) we
have that by construction that the neighborhood of x is a subset of the one of
p(x). If p(u) �= p(v) holds at some point then a forbidden subgraph H exists.
Either p(u) or p(v) was processed first. Assume without lose of generality that it
was p(v). We know that no edge (v, p(u)) can exist because otherwise p(u) would
have assigned itself as parent of v when it was processed. Further we know that
p(u)’s degree can not be smaller than u’s degree as p(u) was processed before
u. As v is a neighbor of u we know that another node x must exist that is a
neighbor of p(u) but not of u, i.e., (u, x) does not exist. The subgraph H induced
by the 4-chain v−u−p(u)−x is thus a P4 or C4 depending on whether the edge
(v, x) exists. We have that u, v and p(u) are not r as p(v) was processed before
them and r was processed first. As x has been chosen such that (u, x) does not
exist but (u, r) exist x �= r. H therefore does not use r and is contained in G.

From Recognition to Editing. We modify the recognition algorithm to construct
a skeleton for arbitrary graphs. This skeleton induces a quasi-threshold graph
Q. We want to minimize Q’s distance to G. Note that all edits are performed
implicitly, we do not actually modify the input graph for efficiency reasons.
The only difference between our recognition and our editing algorithm is what
happens when we process a node u that has a non-processed neighbor v with
p(u) �= p(v). The recognition algorithm constructs a forbidden subgraph H ,
while the editing algorithm tries to resolve the problem. We have three options
for resolving the problem: we ignore the edge {u, v}, we set p(v) to p(u), or we set
p(u) to p(v). The last option differs from the first two as it affects all neighbors
of u. The first two options are the decision if we want to make v a child of u
even though p(u) �= p(v) or if we want to ignore this potential child. We start
by determining a preliminary set of children by deciding for each non-processed
neighbor of u whether we want to keep or discard it. These preliminary children
elect a new parent by majority. We set p(u) to this new parent. Changing u’s
parent can change which neighbors are kept. We therefore reevaluate all the
decisions and obtain a final set of children for which we set u as parent. Then
the algorithm simply continues with the next node.

What remains to describe is when our algorithm keeps a potential child. It
does this using two edge measures: The number of triangles t(e) in which an edge

Fast Quasi-Threshold Editing 255

1 foreach vm-neighbor u do
2 push u;

3 while queue not empty do
4 u ← pop;
5 determine childclose(u) by DFS;
6 x ← max over scoremax of reported u-children;
7 y ← ∑

over childclose of close u-children;
8 if u is vm-neighbor then
9 scoremax(u) ← max{x, y}+ 1;

10 else
11 scoremax(u) ← max{x, y} − 1;

12 if childclose(u) > 0 or scoremax(u) > 0 then
13 report u to p(u);
14 push p(u);

15 Best vm-parent corresponds to scoremax(r);

(a) Pseudo-Code for moving vm

vm

vm

a b

(b) Moving vm example

Fig. 3. In Fig. 3b the drawn edges are in the skeleton. By moving vm, crossed edges
are removed and thick blue edges are inserted. a is not adopted while b is.

e participates and a pseudo-C4-P4-counter pc(e), which is the sum of the number
of C4 in which e participates and the number of P4 in which e participates as
central edge. Computing pc(x, y) is easy given the number of triangles and the
degrees of x and y as pc({x, y}) = (d(x) − 1 − t({x, y})) · (d(y) − 1 − t({x, y}))
holds. Having a high pc(e) makes it likely that e should be deleted. We keep a
potential child only if two conditions hold. The first is based on triangles. We
know by construction that both u and v have many edges in G towards their
current ancestors. Keeping v is thus only useful if u and v share a large number
of ancestors as otherwise the number of induced edits is too high. Each common
ancestor of u and v results in a triangle involving the edge {u, v} in Q. Many of
these triangles should also be contained in G. We therefore count the triangles
of {u, v} in G and check whether there are at least as many triangles as v has
ancestors. The other condition uses pc(e). The decision whether we keep v is
in essence the question of whether {u, v} or {v, p(v)} should be in Q. We only
keep v if pc({u, v}) is not higher than pc({v, p(v)}). The details of the algorithm
can be found in the extended version [6]. The time complexity of this editing
heuristic is dominated by the triangle counting algorithm as the rest is linear.

4 The Quasi-Threshold Mover Algorithm

The Quasi-Threshold Mover (QTM) algorithm iteratively increases the quality
of a skeleton T using an algorithm based on local moving. Local moving is a
technique that is successfully employed in many heuristic community detection
algorithms [2,12,16]. As in most algorithm based on this principle, our algorithm

256 U. Brandes et al.

works in rounds. In each round it iterates over all nodes vm in random order
and tries to move vm. In the context of community detection, a node is moved
to a neighboring community such that a certain objective function is increased.
In our setting we want to minimize the number of edits needed to transform
the input graph G into the quasi-threshold graph Q implicitly defined by T . We
need to define the set of allowed moves for vm in our setting. Moving vm consists
of moving vm to a different position within T and is illustrated in Fig. 3b. We
need to chose a new parent u for vm. The new parent of vm’s old children is
vm’s old parent. Besides choosing the new parent u we select a set of children
of u that are adopted by vm, i.e., their new parent becomes vm. Among all
allowed moves for vm we chose the move that reduces the number of edits as
much as possible. Doing this in sub-quadratic running time is difficult as vm
might be moved anywhere in G. By only considering the neighbors of vm in G
and a few more nodes per neighbor in a bottom-up scan in the skeleton, our
algorithm has a running time in O(n+m logΔ) per round. While our algorithm
is not guaranteed to be optimal as a whole we can prove that for each node vm
we choose a move that reduces the number of edits as much as possible. Our
experiments show that given the result of the initialization heuristic our moving
algorithm performs well in practice. They further show that in practice four
rounds are good enough which results in a near-linear total running time.

Basic Idea. Our algorithm starts by isolating vm, i.e., removing all incident
edges in Q. It then finds a position at which vm should be inserted in T . If vm’s
original position was optimal then it will find this position again. For simplicity
we will assume again that we add a virtual root r that is connected to all nodes.
Isolating vm thus means that we move vm below the root r and do not adopt
any children. Choosing u as parent of vm requires Q to contain edges from all
ancestors of u to vm. Further if vm adopts a child w of u then Q must have an
edge from every descendant of w to vm. How good a move is depends on how
many of these edges already exist in G and how many edges incident to vm in
G are not covered. To simplify notation we will refer to the nodes incident to
vm in G as vm-neighbors. We start by identifying which children a node should
adopt. For this we define the child closeness childclose(u) of u as the number
of vm-neighbors in the subtree of u minus the non-vm-neighbors. A node u is
a close child if childclose(u) > 0. If vm chooses a node u as new parent then
it should adopt all close children. A node can only be a close child if it is a
neighbor of vm or when it has a close child. Our algorithm starts by computing
all close children and their closeness using many short DFS searches in a bottom
up fashion. Knowing which nodes are good children we can identify which nodes
are good parents for vm. A potential parent must have a close child or must
be a neighbor of vm. Using the set of close children we can easily derive a set
of parent candidates and an optimal selection of adopted children for every
potential parent. We need to determine the candidate with the fewest edits. We
do this in a bottom-up fashion.To implement the described moving algorithm
we need to put O(dG(vm)) elements into a priority queue. The running time is
thus amortized O(dG(vm) log dG(vm)) per move or O(n + m logΔ) per round.

Fast Quasi-Threshold Editing 257

We analyze the running time complexity using tokens. Initially only the vm-
neighbors have tokens. The tokens are consumed by the short DFS searches and
the processing of parent nodes. The details of the analysis are complex and are
described in the extended version [6].

Close Children. To find all close children we attach to each node u a DFS instance
that explores the subtree of u. Note that every DFS instance has a constant state
size and thus the memory consumption is still linear. u is close if this DFS finds
more vm-neighbors than non-vm-neighbors. Unfortunately we can not fully run all
these searches as this requires too much running time. Therefore a DFS is aborted
if it finds more non-vm-neighbors than vm-neighbors. We exploit that close chil-
dren are vm-neighbors or have themselves close children. Initially we fill a queue
of potential close children with the neighbors of vm and when a new close child is
found we add its parent to the queue. Let u denote the current node removed from
the queue. We run u’s DFS and if it explores the whole subtree then u is a close
child. We need to take special care that every node is visited only by one DFS. A
DFS therefore looks at the states of the DFS of the nodes it visits. If one of these
other DFS has run then it uses their state information to skip the already explored
part of the subtree. To avoid that a DFS is run after its state was inspected we or-
ganize the queue as priority queue ordered by tree depth. If the DFS of u starts by
first inspecting the wrong children then it can get stuck because it would see the
vm-neighbors too late. The DFS must first visit the close children of u. To assure
that u knows which children are close every close child must report itself to its
parent when it is detected. As all children have a greater depth they are detected
before the DFS of their parent starts.

Potential Parents. Consider the subtree Tu of u and a potential parent w in Tu.
Let Xw be the set of nodes given by w, the ancestors of w, the close children of
w and the descendants of the close children of w. Moving vm below w requires
us to insert an edge from vm to every non-vm-neighbor in Xw. Likewise, not
including vm-neighbors in Xw requires us to delete an edge for each of them. We
therefore want Xw to maximize the number of vm-neighbors minus the number
of non-vm-neighbors. This value gives us a score for each potential parent in
Tu. We denote by scoremax(u) the maximum score over all potential parents in
Tu. Note that scoremax(u) is always at least -1 as we can move vm below u and
not adopt any children. We determine in a bottom-up fashion all scoremax(u)
that are greater than 0. Whether scoremax(u) is -1 or 0 is irrelevant because
isolating vm is never worse. The final solution will be in scoremax(r) of the root
r as its “subtree” encompasses the whole graph. scoremax(u) can be computed
recursively. If u is a best parent then the value of scoremax(u) is the sum over
the closenesses of all of u’s close children ±1. If the subtree Tw of a child w of u
contains a best parent then scoremax(u) = scoremax(w)± 1. The ±1 depends on
whether w is a vm-neighbor. Unfortunately not only potential parents u have a
scoremax(u) > 0. However, we know that every node u with scoremax(u) > 0 is a
vm-neighbor or has a child w with scoremax(w) > 0. We can therefore process all
scoremax values in a similar bottom-up way using a tree-depth ordered priority

258 U. Brandes et al.

queue as we used to compute childclose. As both bottom-up procedures have the
same structure we can interweave them as optimization and use only a single
queue. The algorithm is illustrated in Fig. 3a in pseudo-code form.

5 Experimental Evaluation

We evaluated the QTM algorithm on the small instances used by Nastos and
Gao [14], on larger synthetic graphs and large real-world social networks and
web graphs. We measured both the number of edits needed and the required
running time. For each graph we also report the lower bound b of necessary
edits that we obtained using our lower bound algorithm. We implemented the
algorithms in C++ using NetworKit [17]. All experiments were performed on
an Intel Core i7-2600K CPU with 32GB RAM. We ran all algorithms ten times
with ten different random node id permutations.

Comparison with Nastos and Gao’s Results. Nastos and Gao [14] did not report
any running times, we therefore re-implemented their algorithm. Our implemen-
tation of their algorithm has a complexity of O(m2 + k · n2 ·m), the details can
be found in the extended version [6]. Similar to their implementation we used
a simple exact bounded search tree (BST) algorithm for the last 10 edits. In
Table 1 we report the minimum and average number of edits over ten runs. Our
implementation of their algorithm never needs more edits than they reported1.
For two of the graphs (dolphins and lesmis) our implementation needs slightly
less edits due to different tie-breaking rules.

For all but one graph QTM is at least as good as the algorithm of Nastos and
Gao in terms of edits. QTM needs only one more edit than Nastos and Gao for
the grass web graph. The QTM algorithm is much faster than their algorithm,
it needs at most 2.5 milliseconds while the heuristic of Nastos and Gao needs up
to 6 seconds without bounded search tree and almost 17 seconds with bounded
search tree. The number of iterations necessary is at most 5. As the last round
only checks whether we are finished four iterations would be enough.

Large Graphs. For the results in Table 2 we used two Facebook graphs [18]
and five SNAP graphs [13] as social networks and four web graphs from the
10th DIMACS Implementation Challenge [1,3,4,5]. We evaluate two variants of
QTM. The first is the standard variant which starts with a non-trivial skeleton
obtained by the heuristic described in Section 3. The second variant starts with
a trivial skeleton where every node is a root. We chose these two variants to
determine which part of our algorithm has which influence on the final result.
For the standard variant we report the number of edits needed before any node
is moved. With a trivial skeleton this number is meaningless and thus we report
the number of edits after one round. All other measures are straightforward and
are explained in the table’s caption.

1 Except on Karate, where they report 20 due to a typo. They also need 21 edits.

Fast Quasi-Threshold Editing 259

Table 1. Comparison of QTM and [14]. We report n and m, the lower bound b, the
number of edits (as minimum, mean and standard deviation), the mean and maximum
of number of QTM iterations, and running times in ms.

Name n m b Algorithm Edits Iterations Time [ms]
min mean std mean max mean std

dolphins 62 159 24
QTM 72 74.1 1.1 2.7 4.0 0.6 0.1
NG w/ BST 73 74.7 0.9 - - 15 594.0 2 019.0
NG w/o BST 73 74.8 0.8 - - 301.3 4.0

football 115 613 52
QTM 251 254.3 2.7 3.5 4.0 2.5 0.4
NG w/ BST 255 255.0 0.0 - - 16 623.3 3 640.6
NG w/o BST 255 255.0 0.0 - - 6 234.6 37.7

grass web 86 113 10
QTM 35 35.2 0.4 2.0 2.0 0.5 0.1
NG w/ BST 34 34.6 0.5 - - 13 020.0 3 909.8
NG w/o BST 38 38.0 0.0 - - 184.6 1.2

karate 34 78 8
QTM 21 21.2 0.4 2.0 2.0 0.4 0.1
NG w/ BST 21 21.0 0.0 - - 9 676.6 607.4
NG w/o BST 21 21.0 0.0 - - 28.1 0.3

lesmis 77 254 13
QTM 60 60.5 0.5 3.3 5.0 1.4 0.3
NG w/ BST 60 60.8 1.0 - - 16 919.1 3 487.7
NG w/o BST 60 77.1 32.4 - - 625.0 226.4

Even though for some of the graphs the mover needs more than 20 iterations
to terminate, the results do not change significantly compared to the results
after round 4. In practice we can thus stop after 4 rounds without incurring a
significant quality penalty. It is interesting to see that for the social networks the
initialization algorithm sometimes produces a skeleton that induces more thanm
edits (e.g. in the case of the “Penn” graph) but still the results are always slightly
better than with a trivial initial skeleton. This is even true when we do not abort
moving after 4 rounds. For the web graphs, the non-trivial initial skeleton does
not seem to be useful for some graphs. It is not only that the initial number of
edits is much higher than the finally needed number of edits, also the number of
edits needed in the end is slightly higher than if a trivial initial skeleton was used.
This might be explained by the fact that we designed the initialization algorithm
with social networks in mind. Initial skeleton heuristics built specifically for web
graphs could perform better. While the QTM algorithm needs to edit between
approximately 50 and 80% of the edges of the social networks, the edits of the
web graphs are only between 10 and 25% of the edges. This suggests that quasi-
threshold graphs might be a good model for web graphs while for social networks
they represent only a core of the graph that is hidden by a lot of noise. Concerning
the running time one can clearly see that QTM is scalable and suitable for large
real-world networks.

As we cannot show for our real-world networks that the edit distance that we
get is close to the optimum we generated synthetic graphs by generating quasi-
threshold graphs and applying random edits to these graphs. The details of the

260 U. Brandes et al.

Table 2. Results for large real-world and synthetic graphs. Number of nodes n and
edges m, the lower bound b and the number of edits are reported in thousands. Column
“I” indicates whether we start with a trivial skeleton or not. • indicates an initial
skeleton as described in Section 3 and ◦ indicates a trivial skeleton. Edits and running
time are reported for a maximum number of 0 (respectively 1 for a trivial initial
skeleton), 4 and ∞ iterations. For the latter, the number of actually needed iterations
is reported as “It”. Edits, iterations and running time are the average over the ten
runs.

Name n [K] b [K] I Edits [K] It Time [s]
m [K] 0/1 4 ∞ ∞ 0/1 4 ∞

S
o
ci
a
l
N
et
w
o
rk
s

Caltech
0.77

0.35
• 15.8 11.6 11.6 8.5 0.0 0.0 0.1

16.66 ◦ 12.6 11.7 11.6 9.4 0.0 0.0 0.1

amazon
335

99.4
• 495 392 392 7.2 0.3 5.5 9.3

926 ◦ 433 403 403 8.9 1.3 4.9 10.7

dblp
317

53.7
• 478 415 415 7.2 0.4 5.8 9.9

1 050 ◦ 444 424 423 9.0 1.4 5.2 11.5

Penn
41.6

19.9
• 1 499 1 129 1 127 14.4 0.6 4.2 13.5

1 362 ◦ 1 174 1 133 1 129 16.2 1.0 3.7 14.4

youtube
1 135

139
• 2 169 1 961 1 961 9.8 1.4 31.3 73.6

2 988 ◦ 2 007 1 983 1 983 10.0 7.1 28.9 72.7

lj
3 998

1 335
• 32 451 25 607 25 577 18.8 23.5 241.9 1 036.0

34 681 ◦ 26 794 25 803 25 749 19.9 58.3 225.9 1 101.3

orkut
3 072

1 480
• 133 086 103 426 103 278 24.2 115.2 866.4 4 601.3

117 185 ◦ 106 367 103 786 103 507 30.2 187.9 738.4 5 538.5

W
eb

G
ra
p
h
s

cnr-2000
326

48.7
• 1 028 409 407 11.2 0.8 12.8 33.8

2 739 ◦ 502 410 409 10.7 3.2 11.8 30.8

in-2004
1 383

195
• 2 700 1 402 1 401 11.0 7.9 72.4 182.3

13 591 ◦ 1 909 1 392 1 389 13.5 16.6 65.0 217.6

eu-2005
863

229
• 7 613 3 917 3 906 13.7 6.9 90.7 287.7

16 139 ◦ 4 690 3 919 3 910 14.5 22.6 85.6 303.5

uk-2002
18 520

2 966
• 68 969 31 218 31 178 19.1 200.6 1 638.0 6 875.5

261 787 ◦ 42 193 31 092 31 042 22.3 399.8 1 609.6 8 651.8

S
y
n
th
et
ic Gen. 100

42
• 200 158 158 4.6 0.2 3.5 4.1

160K 930 ◦ 193 158 158 6.1 1.0 3.3 4.9

Gen. 1 000
0.391

• 1.161 0.395 0.395 3.0 3.3 43.8 43.8
0.4K 10 649 ◦ 182 5.52 5.52 6.1 15.9 52.9 78.8

generation process are described in the extended version [6]. In Table 2 we report
the results of two of these graphs with 400 and 160 000 random edits. In both cases
the number of edits the QTM algorithm finds is below or equal to the generated
editing distance. If we start with a trivial skeleton, the resulting edit distance is
sometimes very high, as can be seen for the graph with 400 edits. This shows that
the initialization algorithm from Section 3 is necessary to achieve good quality on

Fast Quasi-Threshold Editing 261

Fig. 4. Edited Caltech network,
edges colored by dormitories of
endpoints.

graphs that need only few edits. As it seems to
be beneficial for most graphs and not very bad
for the rest, we suggest to use the initialization
algorithm for all graphs.

Case Study: Caltech. The main application
of our work is community detection. While a
thorough experimental evaluation of its use-
fulness in this context is future work we want
to give a promising outlook. Figure 4 de-
picts the edited Caltech university Facebook
network from [18]. Nodes are students and
edges are Facebook-friendships. The dormito-
ries of most students are known. We colored
the graph accordingly. The picture clearly
shows that our algorithm succeeds at identi-
fying most of this structure.

6 Conclusion

We have introduced Quasi-Threshold Mover (QTM), the first heuristic algorithm
to solve the quasi-threshold editing problem in practice for large graphs. As a side
result we have presented a simple certifying linear-time algorithm for the quasi-
threshold recognition problem. A variant of our recognition algorithm is also used
as initialization for the QTM algorithm. In an extensive experimental study with
large real world networks we have shown that it scales very well in practice. We
generated graphs by applying random edits to quasi-threshold graphs. QTM
succeeds on these random graphs and often even finds other quasi-threshold
graphs that are closer to the edited graph than the original quasi-threshold
graph. A surprising result is that web graphs are much closer to quasi-threshold
graphs than social networks, for which quasi-threshold graphs were introduced
as community detection method. A logical next step is a closer examination of
the detected quasi-threshold graphs and the community structure they induce.
Further our QTM algorithm might be adapted for the more restricted problem
of threshold editing which is NP-hard as well [10] or extended with an improved
initialization algorithm, especially for web graphs.

Acknowledgment. We thank James Nastos for helpful discussions.

References

1. Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D.: Graph Partitioning and
Graph Clustering: 10th DIMACS Implementation Challenge, vol. 588. American
Mathematical Society (2013)

262 U. Brandes et al.

2. Blondel, V., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. Journal of Statistical Mechanics: Theory and Experi-
ment 2008(10) (2008)

3. Boldi, P., Codenotti, B., Santini, M., Vigna, S.: Ubicrawler: A scalable fully dis-
tributed web crawler. Software - Practice and Experience 34(8), 711–726 (2004)

4. Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: A multireso-
lution coordinate-free ordering for compressing social networks. In: Proceedings of
the 20th International Conference on World Wide Web (WWW 2011), pp. 587–596.
ACM Press (2011)

5. Boldi, P., Vigna, S.: The WebGraph framework I: Compression techniques. In:
Proceedings of the 13th International Conference on World Wide Web (WWW
2004), pp. 595–602. ACM Press (2004)

6. Brandes, U., Hamann, M., Strasser, B., Wagner, D.: Fast quasi-threshold editing
(2015), http://arxiv.org/abs/1504.07379

7. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters 58(4), 171–176 (1996)

8. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM Journal
on Computing 14(1), 210–223 (1985)

9. Chu, F.P.M.: A simple linear time certifying lbfs-based algorithm for recogniz-
ing trivially perfect graphs and their complements. Information Processing Let-
ters 107(1), 7–12 (2008)

10. Drange, P.G., Dregi, M.S., Lokshtanov, D., Sullivan, B.D.: On the threshold of
intractability. In: Proceedings of the 23rd Annual European Symposium on Algo-
rithms (ESA 2015). LNCS. Springer (2015)

11. Drange, P.G., Pilipczuk, M.: A polynomial kernel for trivially perfect editing. In:
Proceedings of the 23rd Annual European Symposium on Algorithms (ESA 2015).
LNCS. Springer (2015)

12. Görke, R., Kappes, A., Wagner, D.: Experiments on density-constrained graph
clustering. ACM Journal of Experimental Algorithmics 19, 1.6:1.1–1.6:1.31 (2014)

13. Leskovec, J., Krevl, A.: Snap datasets: Stanford large network dataset collection
(June 2014), http://snap.stanford.edu/data

14. Nastos, J., Gao, Y.: Familial groups in social networks. Social Networks 35(3),
439–450 (2013)

15. Ortmann, M., Brandes, U.: Triangle listing algorithms: Back from the diversion.
In: Proceedings of the 16th Meeting on Algorithm Engineering and Experiments
(ALENEX 2014), pp. 1–8. SIAM (2014)

16. Rotta, R., Noack, A.: Multilevel local search algorithms for modularity clustering.
ACM Journal of Experimental Algorithmics 16, 2.3:2.1–2.3:2.27 (2011)

17. Staudt, C., Sazonovs, A., Meyerhenke, H.: Networkit: An interactive tool suite for
high-performance network analysis (2014), http://arxiv.org/abs/1403.3005

18. Traud, A.L., Mucha, P.J., Porter, M.A.: Social structure of facebook networks.
Physica A: Statistical Mechanics and its Applications 391(16), 4165–4180 (2012)

19. Wolk, E.S.: A note on “the comparability graph of a tree”. Proceedings of the
American Mathematical Society 16(1), 17–20 (1965)

20. Yan, J.H., Chen, J.J., Chang, G.J.: Quasi-threshold graphs. Discrete Applied Math-
ematics 69(3), 247–255 (1996)

http://arxiv.org/abs/1504.07379
http://snap.stanford.edu/data
http://arxiv.org/abs/1403.3005

	Fast Quasi-Threshold Editing
	1 Introduction
	1.1 Our Contribution
	1.2 Outline
	1.3 Preliminaries

	2 Lower Bounds
	3 Linear Recognition and Initial Editing
	4 The Quasi-Threshold Mover Algorithm
	5 Experimental Evaluation
	6 Conclusion

