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Abstract
We introduce FlowCutter, a novel algorithm to compute
a set of edge cuts or node separators that optimize
cut size and balance in the Pareto-sense. Our core
algorithm heuristically solves the balanced connected st-
edge-cut problem, where two given nodes s and t must
be separated by removing edges to obtain two connected
parts. Using the core algorithm we build variants
that compute node separators and are independent of s
and t. Using the computed Pareto-set we can identify
cuts with a particularly good trade-off between cut size
and balance that can be used to compute contraction
and minimum fill-in orders, which can be used in
Customizable Contraction Hierarchies (CCH), a speed-
up technique for shortest path computations. Our core
algorithm runs in O(cm) time where m is the number
of edges and c the cut size. This makes it well-suited
for large graphs with small cuts, such as road graphs,
which are our primary application. For road graphs we
present an extensive experimental study demonstrating
that FlowCutter outperforms the current state of the art
both in terms of cut sizes as well as CCH performance.

1 Introduction
Cutting a graph into two pieces of roughly the same
size along a small cut is a fundamental and NP-
hard [14] graph problem that has received a lot of at-
tention [2, 8, 18, 21, 23] and has many applications.
The application motivating our research is accelerating
shortest path computations on roads [3, 7, 10, 16, 24],
but in the extended version of our paper [15] we also
present bisection experiments on non-road graphs. Di-
jkstra’s algorithm [12] solves the shortest path problem
in near-linear time. However, this is not fast enough

∗Partial support by DFG grant WA654/19-1 and Google
Focused Research Award.

if the graph consists of a whole continent’s road net-
work. Acceleration algorithms exploit that road net-
works rarely change and compute auxiliary data in a
preprocessing phase. This data is independent of the
path’s endpoints and can therefore be reused for many
shortest path computations. Often the auxiliary data
consists of cuts. The basic idea is: Given a graph G
and a cut C the algorithms precompute for every node
how to get to every edge/node in C. To compute a
path the algorithms first determine whether the end-
points are on opposite sides of C or not. If they are on
opposite sides then the algorithms only need to assem-
ble the precomputed paths towards C and pick the best
one. If they are on the same side then the graph search
can be pruned at C. This halves the graph that needs
to be searched. As half a continent is still large the idea
is applied recursively. The effectiveness of these tech-
niques crucially depends on the size of the cuts found.
Fortunately road graphs have small cuts because of ge-
ographical features such as rivers or mountains. Previ-
ous work has coined the term natural cuts for this phe-
nomenon [8]. However, identifying these natural cuts is
a difficult problem. Fortunately, as roads change only
slowly, preprocessing running times are significantly less
important than cut quality. One of these preprocessing-
based techniques are Customizable Contraction Hierar-
chies (CCH) [10]. We demonstrate the performance of
our algorithms using CCH. The CCH-auxiliary data is
tightly coupled with tree-decompositions [4] and min-
imum fill-in orders. Our algorithms are therefore also
applicable in that domain.

Graph partitioning software used for road graphs
include KaHip [21], Metis [18], Inertial Flow [23], or
PUNCH [8]. We experimentally compare FlowCut-
ter with the first three as we unfortunately have no
implementation of PUNCH. Further Microsoft holds
a PUNCH-patent which restricts commercial applica-
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tions. The cut problem is formalized as a bicriteria
problem optimizing the cut size and the imbalance. The
imbalance measures how much the sizes of both sides
differ and is small if the sides are balanced. The stan-
dard approach is to bound the imbalance and minimize
the cut size. However, this approach has some short-
comings. Consider a graph with a million nodes and
set the max imbalance to 1%. An algorithm finds a
cut C1 with 180 edges and 0.9% imbalance. Is this a
good cut? It seems good as 180 is small compared to
the node count. However, we would come to a different
conclusion, if we knew that a cut C2 with 90 edges and
1.1% imbalance existed. In our application — shortest
paths — moving a few nodes to the other side of a cut
is no problem. However, halving the cut size has a huge
impact. The cut C2 is thus clearly superior. Further
assume that a third cut C3 with 180 edges and 0.7%
imbalance existed. C3 dominates C1 in both criteria.
However, both are equivalent with respect to the stan-
dard problem formulation and thus a tool is not required
to output C3 instead of C1. To overcome these problems
our approach computes a set of cuts that optimize cut
size and imbalance in the Pareto sense. A further sig-
nificant shortcoming of the state-of-the-art partitioners,
with the exception of Inertial Flow, is that they were
designed for small imbalances. Common benchmarks,
such as the one maintained by Chris Walshaw [25], only
include test cases with imbalances up to 5%. However,
for our application imbalances of 50% are fine. For
such high imbalances unexpected things happen with
the standard software, such as increasing the allowed
imbalance can increase the achieved cut sizes.

Contribution. We introduce FlowCutter, a graph
bisection algorithm that optimizes cut size and imbal-
ance in the Pareto sense. The core FlowCutter algo-
rithm aims to solve the balanced edge-st-cut graph bi-
section problem with connected sides. Using this core
as subroutine we design algorithms to solve the node
separator and non-st variants. Using these we design a
nested dissection-based algorithm to compute contrac-
tion node orders as needed by Customizable Contraction
Hierarchies (CCH). These orders are also called mini-
mum fill-in orders or elimination orders and can be used
to compute good tree-decompositions. We prove that
the core algorithm’s running time is in O(cm) where m
is the edge count and c the cut size. We show in an
extensive experimental evaluation that this is a perfect
fit for road graphs that are large in terms of edge count
but small in terms of cut size.

Outline. We define our terminology and introduce
related concepts in the preliminaries. The next section
introduces the core idea of the st-bisection algorithm.
In the following section we describe the piercing heuris-

tic, a subroutine needed in the core algorithm. In the
section afterwards we describe extensions of the core
algorithms: general bisection, node bisection, and com-
puting contraction orders. Finally, we present an experi-
mental evaluation with a comparison against the current
state of the art. The long version [15] contains further
experiments including experiments on non-road graphs.

2 Preliminaries
A graph is denoted by G = (V,A) with node set V
and arc set A. We set n := |V | and m := |A|.
As input graphs we consider undirected, simple graphs
which we interpret as symmetric directed graphs. Our
core algorithm also works on directed graphs which
is important for the computation of node separators.
An edge is a pair of forward and backward arcs in
a symmetric graph. The out-degree do(x) of a node
x is is the number of outgoing arcs. Similarly the
in-degree di(x) is the number of incoming arcs. In
symmetric graphs we refer to the value as degree d(x) of
x, as di(x) = do(x). A degree-2-chain is a sequence of
adjacent nodes x, y1 . . . yk, z in a symmetric graph such
that k ≥ 1, d(x) 6= 2, d(y) 6= 2, and ∀i : d(yi) = 2. An
xy-path P is a list (x, p1), (p1, p2) . . . (pi, y) of adjacent
arcs and i is P ’s length. The distance dist(x, y) is
defined as the minimum length over all xy-paths.

Cuts & Separators. A cut (V1, V2) is a partition
of V into two disjoint sets V1 and V2 such that V =
V1 ∪ V2. An arc (x, y) with x ∈ V1 and y ∈ V2 is
called cut-arc. The size of a cut is the number of cut-
arcs. A min-cut is a cut of minimum size. A separator
(V1, V2, Q) is a partition of V into three disjoint sets
V1, V2 and Q such that V = V1 ∪ V2 ∪ Q. No arc
connecting V1 and V2 must exist. The cardinality of
Q is the separator’s size. The imbalance ε ∈ [0, 1]
of a cut is defined as the smallest number such that
max {|V1| , |V2|} ≤ d(1 + ε)n/2e. The imbalance of a
separator is defined analogously. However, note that
because the separator itself may contain nodes it is
possible that for separators the minimum ε is smaller
than 0. A negative ε is not possible for edge cuts. A ST -
cut/separator is a cut/separator between two disjoint
node sets S and T such that S ⊆ V1 and T ⊆ V2. If
S = {s} and T = {t} we write st-cut/separator. The
expansion of a cut/separator is the cut’s size divided by
min{|V1| , |V2|}.

Pareto-Optimization & NP-hardness. Com-
puting cuts (and separators) is inherently a bicriteria
problem: We want to minimize the cut size and mini-
mize the imbalance. A cut C1 dominates a cut C2 if C1

is strictly better with respect to one criterion and no
worse with respect to the other criterion. A cut that is
not dominated by any other cut is Pareto-optimal. We

91 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/2

4/
18

 to
 4

6.
16

1.
61

.1
67

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



refer to the pair of imbalance and cut size of a Pareto-
optimal cut as Pareto-trade-off. It is possible that sev-
eral Pareto-optimal cuts exist with the same trade-off.
We consider the problem of computing for every Pareto-
trade-off one cut.

This is a departure from existing experimental pa-
pers [2, 6, 18, 21, 23, 25, 26] that consider the prob-
lem of finding a smallest cut subject to an imbalance
bounded by an input parameter. Note that, given a cut
for every Pareto-trade-off it is easy to find a smallest
cut with a bounded imbalance. However, a cut with
minimum size with an imbalance bounded by an input
parameter is not necessarily Pareto-optimal: It is possi-
ble that a more balanced cut with the same size exists.
Our problem setting is therefore a strict generalization
of the problem setting considered in previous works.

The minimum cut problem disregarding the imbal-
ance is polynomially solvable [13]. However, nearly all
cut-problems that combine optimizing imbalance and
cut size are NP-hard. Finding a minimum cut with ε = 0
is NP-hard [14]. A sparsest cut is a cut that minimizes

c
|V1|·|V2| . Note that, a sparsest cut is Pareto-optimal.
Finding a sparsest cut is NP-hard [19]. Even comput-
ing, for a fixed st-pair, a most balanced cut among all
st-cuts of minimum size is already NP-hard [5]. Being
able to compute a cut for every Pareto-trade-off effi-
ciently would yield an efficient algorithm for all these
NP-hard problems. Unless P=NP, we can therefore not
hope to find an efficient algorithm that provably com-
putes an optimal cut for every Pareto-trade-off. Our
algorithm tries to heuristically compute in a single run
a cut for every Pareto-trade-off.

Flows. Our method builds upon unit flows that are
computed using augmenting paths [13, 1]. Formally, a
flow is a function f : A→ {0, 1}. An arc a with f(a) = 1
is saturated. Denote by p(x) =

∑
(x,y)∈A f(x, y) the

surplus of a node x. A flow is valid with respect to a
source set S and target set T if and only if: (i) flow may
be created at sources, i.e., ∀s ∈ S : p(s) ≥ 0, (ii) flow
may be removed at targets, i.e., ∀t ∈ T : p(t) ≤ 0, (iii)
flow is conserved at all other nodes, i.e., ∀x ∈ V \(S∪T ) :
p(x) = 0, and (iv) flow does not flow in both directions,
i.e., for all (x, y) ∈ A such that (y, x) ∈ A exists it holds
that f(x, y) = 0 ∨ f(y, x) = 0. The flow intensity is
defined as the sum over all f(x, y) for arcs (x, y) with
x ∈ S and y 6∈ S. The flow intensity is sometimes
also called flow value. A saturated path a1, a2 . . . , ai is
a path such that ∃i : f(ai) = 1. A node x is source-
reachable if a non-saturated sx-path exists with s ∈ S.
Similarly a node x is called target-reachable if a non-
saturated xt-path exists with t ∈ T . We denote by SR

the set of all source-reachable nodes and by TR the set
of all target reachable nodes. In [13] it was shown that a

flow is maximum if and only if no non-saturated st-path
with s ∈ S and t ∈ T exists. If such a path exists then
it is called augmenting path. The classic approach to
computing max-flows consists of iteratively searching for
augmenting paths. Our algorithm uses this approach.
The minimum ST -cut size corresponds to the maximum
ST -flow intensity. We define the source-side cut as
(SR, V \SR) and the target-side cut as (TR, V \TR). Note
that in general max-flows and min-cuts are not unique.
However, the source-side and target-side cuts are.

Customizable Contraction Hierarchy (CCH)
is an acceleration algorithm for shortest path compu-
tations. We only give a high-level overview, as we
use CCH only to evaluate the quality of our cuts. No
part of FlowCutter builds upon CCH. The details are
in [10, 11]. The central operation is the node contrac-
tion: Contracting a node v consists of removing v and
adding edges between all of v’s unconnected neighbors.
The input to CCH consists of a node contraction order
along which the nodes are iteratively contracted. This
yields a supergraph G′ of the input graph. The weights
of G′ are computed using an algorithm that essentially
enumerates all triangles in G′ in the so-called customiza-
tion phase. Note that contrary to the order computa-
tion, having a fast customization phase is useful as it
allows us to incorporate changes to the weights quickly.
Such changes could for example be caused by traffic con-
gestion. CCH can also be used if several weights exist
on the same road graph. Having regular cars and trucks
is an example of such a situation. The CCH structure
can be shared and does not have to be replicated for
each weight. It is sufficient to replicate the weights. We
therefore discern between memory that is independent
of the weights and shared and memory that is needed
per weight. Given the weights of G′, the shortest path
query consists of a bidirectional search in G′ only fol-
lowing arcs (x, y) such that x appears before y in the
order. The search space of a node z is the subgraph of
G′ that is reachable from z while only following such
arcs. Smaller search spaces yield faster queries. Fewer
triangles in G′ yield a faster customization. Less arcs in
G′ result in less memory consumption. All these quality
metrics depend on the contraction order, whose quality
depends on the cuts used in its construction. Finding
these cuts is where FlowCutter fits into the big picture.

Tree-Decompositions. The constructed super-
graph G′ is chordal, which is a graph class tightly cou-
pled with tree-decomposition [4]. The maximum cliques
of G′, which can be efficiently identified in chordal
graphs, correspond to the bags of a tree-decomposition.
A corresponding tree backbone can be efficiently com-
puted. The maximum clique size in G′ is thus an upper
bound to the treewidth of the input graph.
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(a) Balanced cut C (b) Unbalanced cut C (c) Extra sources to avoid C

(d) Source side cut C′ (e) Target side cut C′

Figure 1: The ellipse represents a graph and the curved lines are cuts. The “+”-signs represent source nodes and
“×”-signs represent target nodes. The nodes s and t are represented by the “+” and “×” in Figure 1a and the
equally positioned “+” and “×” in the other figures.

3 Core Algorithm
Our algorithm works by computing a sequence of st-
min-cuts of increasing size. The more imbalanced cuts
are computed first and are followed by more balanced
ones. The cuts in this sequence form, after removing
dominated ones, the heuristically approached Pareto-
set. During its execution our algorithm maintains a
maximum flow. With respect to this flow there is
a source-side cut CS and a target-side cut CT . Our
algorithm picks one of the two as the next cut C that it
inserts into the set. After choosing C it modifies the set
of source and target nodes and potentially augments the
maintained flow. This results in a new pair of source-
side and target-side cuts. Our algorithm picks CS as
C if there are less or equally many nodes on the source
side of CS than there are on the target side of CT .

Consider the situation depicted in Figure 1. Ini-
tially s is the only source node and t is the only target
node. Our algorithm starts by computing a maximum
st-flow. If we are lucky and the cut C is perfectly bal-
anced as in Figure 1a then our algorithm is finished.
However, most of the time we are unlucky and we ei-
ther have the situation depicted in Figure 1b where the
source’s side of C is too small or the analogous situation
where the target’s side of C is too small. Assume with-
out loss of generality that the source’s side is too small.
Our algorithm now transforms non-source nodes into
additional source nodes to invalidate C. To invalidate
C our algorithm does two things: It marks all nodes on
the source’s side of C as source nodes and marks one
node as source node on the target’s side of C that is
incident to a cut edge. This node on the target’s side
is called the piercing node and the corresponding cut
arc is called piercing arc. The situation is illustrated in
Figure 1c. All nodes on the source’s side are marked as

source node to assure that C ′ does not cut through the
source’s side. The piercing node is necessary to assure
that C ′ 6= C. Choosing a good piercing arc is crucial for
good quality. In this section we assume that we have a
piercing oracle that determines the piercing arc given C
in time linear in the size of C. In Section 4 we describe
heuristics to implement such a piercing oracle.

To make progress we need that C ′ is non-
dominated. As its size is a least the size of C, this is
equivalent with C ′ being more balanced than C. How-
ever, we can only guarantee this if C ′ is, just as C, a
source-side cut as in Figure 1d. If C ′ is a target-side cut
as in Figure 1e then C ′ might have a worse balance than
C. Luckily, as our algorithm progresses, either the tar-
get side will catch up with the balance of the source side
or another source side cut is found. In both cases our
algorithm eventually finds a cut with a better balance
than C.

Our algorithm computes the st-min-cuts by finding
max-flows and using the max-flow-min-cut duality [13].
Our algorithm assigns unit capacities to every edge
and compute the flow by successively searching for
augmenting paths. A core observation of our algorithm
is that turning nodes into sources or targets never
invalidates the flow. It is only possible that new
augmenting paths are created increasing the maximum
flow intensity. Given a set of nodes X we say that
forward growing X consists of adding all nodes y to
X for which a node x ∈ X and a non-saturated xy-
path exist. Analogously backward growing X consists
of adding all nodes y for which a non-saturated yx-path
exists. The growing operations are implemented using
a graph traversal algorithm (such as a DFS or BFS)
that only follows non-saturated arcs. The algorithm
maintains besides the flow values four node sets: the
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S ← {s}; T ← {t};1

SR ← S; TR ← T ;2

forward-grow SR; backward-grow TR;3

while S ∩ T = ∅ do4

if SR ∩ TR 6= ∅ then5

augment flow by one;6

SR ← S; TR ← T ;7

forward-grow SR; backward-grow TR;8

else9

if |SR| ≤ |TR| then10

forward-grow S;11

// now S = SR

output source side cut arcs;12

x← pierce node;13

S ← S ∪ {x};14

SR ← SR ∪ {x};15

forward-grow SR;16

else17

// Analogous for target side

Figure 2: st-Bisection Algorithm

set of sources S, the set of targets T , the set source-
reachable nodes SR, and the set of target-reachable
nodes TR. Note that an augmenting path exists if and
only if SR ∩ TR 6= ∅. Initially we set S = {s} and
T = {t}. Our algorithm works in rounds. In every
round it tests whether an augmenting path exists. If
one exists the flow is augmented and SR and TR are
recomputed. If no augmenting path exists then it must
enlarge either S or T . This operation also yields the
next cut. It then selects a piercing arc and grows SR

and TR accordingly. The pseudo-code is in Figure 2.
Running Time. Assuming a piercing oracle with

a running time linear in the current cut size, we can
show that the algorithm has a running time in O(cm)
where c is the size of the most balanced cut found and
m is the number of edges in the graph. The detailed
argument requires a non-trivial amortized running time
analysis and is provided below. However, the core
argument is simple: All sets only grow unless we find
an augmenting path. As each node can only be added
once to each set, the running time between finding
two augmenting paths is linear. In total we find c
augmenting paths. The total time is thus in O(cm).

The lines 1-3 have a running time in O(m) and are
therefore unproblematic. The condition in line 4 can be
implemented in O(1) as following: S and T only grow.
We can therefore check when adding a node to one of the
sets, whether it is contained in the other set. If this is
the case we abort the loop. Outside of the true-branch of

the if-statement in line 5 also SR and TR only grow. We
can therefore use the same argument for the condition
in line 5. Lines 6-8 need O(m) running time each time
they are executed. However, they are only executed
when the flow is augmented. This happens c times.
The total running time is thus in O(cm). Showing that
the running time of the lines 11-16 is amortized sub-
linear is the complex part of the analysis. Implementing
the growing operations in lines 11 and 16 the naive way
needs linear running time and is therefore too slow. The
naive approach looks at all internal nodes to determine
all outgoing edges. These are needed to determine which
are the non-saturated edges. However, either the sets
only contain a single node x or they were generated by
growing them and afterwards adding a single additional
node y. In either case it is sufficient to look at the
outgoing edges of x or y because all other outgoing edges
must be saturated, as otherwise they would have been
followed in a previous iteration. Outputting the cut in
line 12 causes costs linear in the cut size. We account
for these when calling the piercing oracle in line 13.
However, it is non-trivial that we can list all edges in
the cut in linear time. We do this by maintaining two
additional edge sets CS and CT . The source side cut is
in CS and the target side cut is in CT . We only describe
how to maintain CS . The algorithm for CT is analogous.
Each time we grow S and the graph search algorithm
encounters a saturated edge e it adds e to CS . Every
cut edge is saturated and therefore the desired cut is a
subset of CS . As S never shrinks each edge can only be
added at most once and therefore these additions have
running time costs within O(m). In line 12 it is possible
that CS contains edges that are saturated but not part
of the cut. We filter those edges by iterating over all
edges and removing those for which both end points are
in S. As each edge can be removed at most once the
removal costs are within O(m). The remaining edges
are the cut. We account for the running time needed
to skip the cut edges during the filter step when calling
the piercing oracle in line 13. The lines 14-15 have a
constant running time. It remains to show that all the
calls to the piercing oracle in line 13 in total do not need
more than O(cm) running time. The key observation
here is that each time that the oracle is called it names
a piercing arc e. The next time the oracle is called e is
no longer part of the cut and therefore the oracle can
no longer return e. Each arc is therefore only at most
in one iteration the piercing arc. The oracle is therefore
called at most m times. Each time it has a running
time linear in the cut size. We can bound the cut size
of each step by the final cut size c as the cut sizes only
increases. The total running time spent in the piercing
oracle is therefore bound by O(cm).
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s b

c

a

Figure 3: The curves represent cuts, the current one
is solid. The arrows are cut-arcs, bold ones result in
augmenting paths. The dashed cut is the next cut where
piercing any arc results in an augmenting path.

4 Pierce Heuristic
In this section we describe how we implement the
piercing oracle used in the previous section. Given an
unbalanced arc cut C the piercing oracle should select
a piercing arc that is not part of the final balanced cut
in at most O(|C|) time. Piercing the source side and
target side cuts and are analogous and we therefore only
describe the procedure for the source side. Denote by
a = (q, p) the piercing arc with piercing node p 6∈ S.

Primary Heuristic: Avoid Augmenting
Paths. The first heuristic consists of avoiding augment-
ing paths whenever possible. Piercing an arc a leads to
an augmenting path if and only if p ∈ TR, i.e., a non-
saturated path from p to a target node exists. As our
algorithm has computed TR it can determine in con-
stant time whether piercing an arc would increase the
size of the next cut. The proposed heuristic consists
of preferring edges with p 6∈ TR if possible. It is pos-
sible that none or multiple p 6∈ TR exist. In this case
our algorithm employs a further heuristic to choose the
piercing arc among them. However, note that the sec-
ondary heuristic is often only relevant in the case that
none exists. Consider the situation depicted in Figure 3.
Suppose for the argument that the target node is still far
away and that the perfectly balanced cut is significantly
larger. Our algorithm can choose between three piercing
arcs a, b, and c. It will not pick a as this would increase
the cut size. The question that remains is whether b
or c is better. The answer is that it nearly never mat-
ters. Piercing b or c does not modify the flow and thus
does not change which piercing arcs result in larger cuts.
The algorithm will therefore eventually end up with the
dashed cut independent of whether b or c is pierced. We
know that the dashed cut has the same size as all cuts
found between the current cut and the dashed cut. Fur-
ther the dashed cut has the best balance among them
and therefore dominates all of them. This means that
most of the time our avoid-augmenting-paths heuristic

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

0.
5

0.
5

1.
5

● ●

s t

c=1.3

c=0.7 cut

Figure 4: Geometric interpretation of the distance
heuristic.

does the right thing. However it is less effective when
cuts approach perfect balance. The reason is that that
the source and target sides meet. When approaching
perfect balance our algorithm results in a race between
source and target sides to claim the last nodes. Not the
best side wins, but the first that gets there.

Secondary Heuristic: Distance-Based. Our
algorithm picks a piercing arc such that dist(p, t) −
dist(s, p) is maximized, where s and t are the original
source and target nodes. The dist(p, t)-term avoids
that the source side cut and target side cut meet as
nodes close to t are more likely to be close to the
target side cut. Subtracting dist(s, p) is motivated by
the observation that s has a high likelihood of being
positioned far away from the balanced cuts. A piercing
node close to s is therefore likely on the same side as
s. Our algorithm precomputes the distances from s and
t to all nodes before the core algorithm is run. This
allows it to evaluate dist(p, t) − dist(s, p) in constant
time inside the piercing oracle. The distance heuristic
has a geometric interpretation as depicted in Figure 4.
We interpret the distance as euclidean distance. If s
and t are points in the plane then the set of points p for
which ‖p− s‖2 − ‖p− t‖2 = c holds for some constant
c is one branch of a hyperbola. The figure depicts the
branches for c = 1.3 and c = 0.7. The heuristic prefers
piecing nodes on the c = 1.3-branch as it maximizes c.
A consequence of this is that the heuristic works well
if the desired cut follows roughly a line perpendicular
to the line through s and t. This heuristic works on
many graphs but there are instances where it breaks
down such as cuts that follow a circle-like shape. Note
that this geometric interpretation also works in higher-
dimensional spaces.
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Figure 5: Expansion of an undirected graph G into a
directed graph G′. The dotted arrows are internal arcs.
The solid arrows are external arcs.

5 Extensions
Our base algorithm can be extended to compute general
small cuts that are independent of an input st-pair, to
compute node separators, and it can be used to compute
contraction orders.

General Cuts. Our core algorithm computes bal-
anced st-cuts. However, in many situations cuts inde-
pendent of a specific st-pair are needed. This prob-
lem variant can be solved with high probability by run-
ning FlowCutter multiple times with st-pairs picked uni-
formly at random. Indeed, suppose that C is an Pareto-
optimal cut such that the larger side has αn nodes
(i.e. α = (ε + 1)/2) and q is the number of st-pairs.
The probability that C separates a random st-pair is
2α(1 − α). The success probability over all q st-pairs
is thus 1 − (1− 2α(1− α))q. For ε = 33% and q = 20
the success probability is 99.99%. For larger α this rate
decreases. However, it is still large enough for all prac-
tical purposes, as for α = 0.9 (i.e. ε = 80%) and q = 20
the rate still is 98.11%. The number of st-pairs needed
does not depend on the size of the graph nor on the
cut size. If the instances are run one after another then
the running time depends on the worst cut’s size which
may be more than c. We therefore run the instances
simultaneously and stop once one instance has found a
cut of size c. The running time is thus in O(cm).

Note that this argumentation relies on the assump-
tion that it is enough to find an st-pair that is separated.
However, in practice the positions of s and t in their re-
spective sides influence the performance of our piercing
heuristic. As a result it is possible that in practice more
st-pairs are needed than predicted by theory.

Node Separators. To compute contraction orders
node separators are needed and not edge cuts. To
achieve this we employ a standard construction to model
node capacities in flow problems [1]. We transform
the symmetric input graph G = (V,A) into a directed
expanded graph G′ = (V ′, A′) and compute flows on G′.
We expand G into G′ as follows: For each node x ∈ V
there are two nodes xi and xo in V ′. We refer to xi
as the in-node and to xo as the out-node of x. There

is an internal arc (xi, xo) ∈ A′ for every node x ∈ V .
We further add for every arc (x, y) ∈ A an external
arc (xo, yi) to A′. The construction is illustrated in
Figure 5. For a source-target pair s and t in G we
run the core algorithm with source node so and target
node ti in G′. The algorithm computes a sequence of
cuts in G′. Each of the cut arcs in G′ corresponds
to a separator node or a cut edge in G depending on
whether the arc in G′ is internal or external. From this
mixed cut our algorithm derives a node separator by
choosing for every cut edge in G the endpoint on the
larger side. Unfortunately using this construction, it is
possible that the graph is separated into more than two
components, i.e., we can no longer guarantee that both
sides are connected.

Contraction Orders. Using a nested dissection
[20] variant our algorithm constructs contraction orders.
It bisects G along a node separator Q into subgraphs G1

and G2. It recursively computes orders for G1 and G2.
The order of G is the order of G1 followed by the order
of G2 followed by the nodes in Q in an arbitrary order.
Selecting Q is non-trivial. After some experimentation
we went with the following heuristic: Pick a separator
with minimum expansion and at most 60% imbalance.
Note that we can abort FlowCutter early once we can
guarantee that all subsequently found cuts have a larger
expansion than the best cut found so far. Suppose that
c is the size up to which FlowCutter has computed the
cuts, then c+1

|V |/2 is a lower bound on the expansion of
all subsequent cuts. If the expansion of the best cut
seen so far is below or equal to this lower bound, then
we abort FlowCutter. As base case for the recursion we
use trees and cliques. On cliques any order is optimal
and on trees an optimal order can be derived from a
linear-time-computable [22] optimal node ranking.

Road graphs have many nodes of degree 1 or 2. We
exploit this in a fast preprocessing step to significantly
reduce the graph size. Our algorithm determines the
largest biconnected component B using [17] in linear
time. It then removes all edges from G that leave B. It
continues independently on every connected component
of G. The resulting orders are concatenated. The order
of B must be last. The other orders can be concatenated
in an arbitrary way. For each connected component our
algorithm identifies the degree-2-chains. For a chain
x, y1 . . . yk, z it removes all yi and adds an edge from x
to z unless x or z have degree 1. The yi nodes and x
or z if they have degree 1 are positioned at the front
of the order. Their relative order is determined using
the optimal tree ordering algorithm. All remaining
nodes are ordered behind them. After eliminating
degree-2-chains our algorithm uses the nested dissection
algorithm described above.
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6 Experiments
We compare Flowcutter to the state-of-the-art parti-
tioners KaHip, Metis, and InertialFlow. We present
three experiments: (1) we compare the produced con-
traction orders in terms of CCH performance, (2) com-
pare the Pareto-cut-sets, and (3) evaluate FlowCutter
on non-road graphs using the Walshaw benchmark set.
The last experiment is in the long version of this pa-
per [15] and can be summarized as follows: For ε = 5%
there are only 6 out of 24 graphs where FlowCutter does
not match the best known solutions. For 3 of them
FlowCutter is off by at most 5 edges. All experiments
were run on a Xeon E5-1630 v3 @ 3.70GHz with 128GB
DDR4-2133 RAM.

6.1 Order Experiments We compute contraction
orders for 4 DIMACS roads graphs [9]. The smallest
is Colorado with n = 436K and m = 1M. Next is
California and Nevada with n = 1.9M and m = 4.6M,
followed by (Western) Europe with n = 18M and m =
44M and finally a graph encompassing the whole USA
with n = 24M and m = 57M.

We use FlowCutter with all extensions in two vari-
ants denoted by F20 and F3, with 20 respectively 3
random source-target-pairs. We use the ndmetis tool
of Metis 5.1.0 with the default parameters and refer to
it as M. Unfortunately KaHip1 and InertialFlow do not
provide order computation tools. We therefore imple-
mented basic nested dissection ordering algorithms on
top of them. The KaHip implementation was already
used in [10] and is the current state of the art in terms
of order quality. We refer to it as K. The tool iteratively
computes cuts using KaHip-strong 0.61 using different
random seeds until the cut size does not decrease for
10 rounds. We set ε = 20% for KaHip. This value
is comparatively small, but KaHip has problems with
large ε as demonstrated in the Pareto-cut experiments
in Section 6.2. Note that this setup solely optimizes or-
der quality disregarding order computation times, which
therefore can certainly be improved. We report the cor-
responding running times therefore as upper bounds.
Note that we argue that FlowCutter is superior mostly
because of the achieved order quality, not because it is
particularly fast. Not having well-tuned KaHip running
times is therefore not problematic for our comparison.
We reimplemented InertialFlow and were able to repro-
duce the cuts and running times of the original publica-
tion with our implementation. It is not randomized and
therefore computing several cuts with different random
seeds per graph as for KaHip is not useful. As conse-
quence the reported running times adequately represent

1Some preliminary work was done in [26].

the performance of a basic nested dissection algorithm
combined with Inertial Flow. InertialFlow is denoted
by I and we set ε = 60%. Both KaHip and InertialFlow
compute edge cuts. We turn them into node separators
by choosing the endpoints of the cut edges on the larger
side.

Results. Our results are summarized in Table 1.
We observe that, modulo small cache effects, the cus-
tomization time is correlated with the number of tri-
angles and the average query running time is corre-
lated with the number of arcs in the CCH. The memory
needed per weight are correlated with the number of
arcs in the CCH. The CCH-structure memory consump-
tion is dominated by the list of precomputed triangles
and thus the amount of necessary memory is correlated
with the number of triangles. All these correlation are
non-surprising and were predicted by CCH theory. De-
note by ns and ms the number of nodes and arcs in the
search space. For the average numbers we observe that
1.7 ≤ ns(ns−1)

2 /ms ≤ 2.6 and for the maximum numbers
we observe that 2.1 ≤ ns(ns−1)

2 /ms ≤ 3.9, which indi-
cates that the search spaces are nearly complete graphs.
The number of nodes and the number of arcs are thus
related. We can thus say that search space is small or
large without indicating whether we refer to nodes or
arcs.

Search Space. FlowCutter produces the smallest
search spaces. Using more source-target pairs results in
better orders, but already 3 give a decent order. Inertial
Flow is dominated by KaHip with the exception of the
USA graph. Metis is last by a significant margin on all
but the smallest graph. The ratio between the average
and the maximum size is very interesting. A high ratio
indicates that a partitioner often finds good cuts, but at
least one cut is comparatively bad. This ratio is never
close to 1, indicating that road graphs are not perfectly
homogeneous. In some regions, probably cities, the
cuts are worse than in some other regions, probably the
country-side. Compared to the competitors, the ratio is
however higher for InertialFlow. This illustrates that its
geography-based heuristic is effective most of the time
but not always.

CCH Size. A small search size is not equivalent
with the CCH containing only few arcs. It is possible
that vertices are shared between many search spaces
and thus the CCH can be significantly smaller than the
sum of the search space sizes. This effect occurs and
explains why the number of arcs in CCH is orders of
magnitude smaller than the sum over the arcs in all
search spaces. Further, minimizing the number of arcs
in the CCH is not necessarily the same as minimizing the
search space sizes. This explains why Metis beats KaHip
in terms of CCH size but not in terms of search space
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Search Space #Arcs Up. Running times

Nodes Arcs [·103] in CCH #Tri. Tw. Order Cust. Query Mem. [MiB]

Avg. Max. Avg. Max. [·106] [·106] Bd. [s] [ms] [µs] per w. indep.

C
ol

M 155.6 354 6.1 22 1.4 6.4 102 2.0 18 26 10 61
K 135.1 357 4.6 22 1.7 7.2 103 ≤3 837.1 21 20 13 70
I 151.2 542 6.2 38 1.5 7.4 119 7.4 21 25 11 69
F3 126.3 280 4.1 15 1.3 4.8 91 10.3 15 18 10 48
F20 122.4 262 3.8 14 1.3 4.4 87 61.0 14 18 10 44

C
al

M 275.5 543 17.3 53 6.5 36.4 180 9.9 88 60 50 335
K 187.7 483 7.0 37 7.5 34.2 160 ≤18 659.3 90 30 57 326
I 191.4 605 7.1 53 6.9 34.1 161 42.6 84 31 52 320
F3 177.5 356 6.2 24 5.9 23.4 127 64.1 69 27 45 231
F20 170.0 380 5.6 26 5.8 21.8 132 386.8 66 26 44 218

E
ur

M 1 223.4 1 983 441.4 933 69.9 1 390.4 926 125.9 2 242 1 162 533 11 210
K 638.6 1 224 114.3 284 73.9 578.2 482 ≤213 091.1 975 304 564 5 044
I 732.9 1 569 149.7 414 67.4 589.7 516 1 017.2 932 385 514 5 082
F3 734.1 1 159 140.2 312 60.3 519.4 531 2 532.7 853 366 460 4 491
F20 616.0 1 102 102.8 268 58.8 459.6 455 16 841.5 780 271 449 4 024

U
SA

M 990.9 1 685 249.1 633 86.0 1 241.1 676 170.8 2 084 651 656 10 217
K 575.5 1 041 71.3 185 97.9 737.1 366 ≤265 567.3 1 250 202 747 6 462
I 533.6 1 371 62.0 291 88.8 682.0 384 1 076.8 1 122 177 677 5 972
F3 562.7 906 66.4 159 75.9 478.4 321 2 117.7 856 190 579 4 320
F20 490.6 868 52.7 154 74.3 440.5 312 12 379.2 811 156 567 4 019

Table 1: Contraction Order Experiments. We report the average and maximum over all nodes v of the number
of nodes and arcs in the CCH-search space of v, the number of arcs and triangles in the CCH, and the induced
upper treewidth bound. We additionally report the order computation times, the customization times, and the
average shortest path distance query times. Only the customization times are parallelized using 4 cores. The
customization times are the median over 9 runs to eliminate running variance. The query running times are
averaged over 106 st-queries with s and t picked uniformly at random. Finally, we report the memory needed per
directed 32bit weight, including the input graph weights, and for the weight-independent CCH structure. Note
that several CCH customization variants exist. The one we report is non-amortized, non-perfect, with SSE and
uses precomputed triangles. The CCH structure space consumption includes the precomputed triangles.
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Figure 6: F20 Pareto cuts, Central Europe

size. InertialFlow seems to be comparable to Metis in
terms of CCH size, as the CCH arc count is sometimes
slightly below and sometimes slightly larger. However,
FlowCutter beats all competitors and clearly achieves
the smallest CCH sizes.

Triangles. A third important order quality metric
is the number of triangles in the CCH. Metis is com-
petitive on the two smaller graphs, but is clearly domi-
nated on the continental sized graphs. InertialFlow and
KaHip seem to be very similar, with the exception of
the USA graph where InertialFlow comes out slightly
ahead. FlowCutter also wins with respect to this quality
metric producing between 20% and 30% less triangles
compared to the closest competitor.

Treewidth. As the CCH is essentially a chordal
graph which are closely tied to tree decomposition, we
obtain upper bounds on the treewidth of the input
graphs as a side product. This quality metric is not
directly related to CCH performance, but is of course
indirectly related as most of the other criteria can be
bounded in terms of it. As such it reflects the same
trend: Metis is worst, followed by InertialFlow, followed
by KaHip, and FlowCutter with the best bounds.

Order Computation Times. Quality comes at
a price and thus the computation times of the orders
follow the opposite trend: FlowCutter is the slowest,
followed by InertialFlow, while Metis is astonishingly
fast. Where KaHip fits into the picture is unclear,
as the nested dissection implementation employed is
not tuned for computation speed and only for order
quality. However, the times in the next experiment
suggested that a well-tuned implementation is between
FlowCutter and InertialFlow.

6.2 Pareto Cut Set Experiments. In the previous
experiment we have demonstrated that FlowCutter
produces the best contraction orders. In this section
we look at the Parteo-cut sets of two graph in more
detail. Selecting meaningful and representative testing
instances is difficult. The cuts of the USA graph are

dominated by the cut induced by the Mississippi, as
demonstrated in the long version of this paper [15].
The Europe graph is problematic as the top level cuts
behave differently from nearly all lower level cuts. On
the top level there are many comparatively weakly
connected peninsulas. This structure is very rare on
the lower levels. This leads to a special behavior
that we discuss in detail in the long version of this
paper [15] which can be summarized as follows: Cutting
the peninsulas leads to a smaller cut but only delays
the inevitable cut through central Europe in a recursive
setup. Cutting the peninsulas thus looks clearly better,
even though it is not clearly superior when considering
a recursive partitioning. We therefore run experiments
on a subgraph of the Europe with a latitude ∈ [45, 52]
and longitude ∈ [−2, 11] that encompasses most of
Central Europe, i.e., with all the peninsulas cut off.
We additionally pick the DIMACS California&Nevada
graph because [6] determined an optimal cut of this
graph for ε = 0. The long version of this paper [15]
additionally contains numbers for the Colorado graph.
We compare KaHip 0.71, Metis 5.1.0, InertialFlow and
FlowCutter-20 in terms of edge cut sizes. The first three
compute a single cut, whereas FlowCutter computes a
Pareto-set, such as the one illustrated in Figure 6. We
therefore run the first three for various choices of ε. We
use KaHip-strong with --enforce_balance for ε = 0.
All other parameters have default values.

Results. Table 2 summarizes our results. Metis
produces extremely bad cuts for imbalances above 70%.
Strangely KaHip has problems with perfect balance.
This is unexpected as KaHip was optimized for perfect
balance [21]. This is most likely the result of the
default parameters not being optimized for road graphs.
KaHip and Metis mostly ignore the allowed imbalance.
The maximum achieved imbalance of KaHip is 3.2%
even though 90% is allowed. Metis is nearly always
well below 1%. Interestingly increasing the allowed
imbalance can increase the achieved cut sizes. We
conclude that computing a full Pareto-cut-set for a road
graph is not possible in the straight-forward way with
KaHip or Metis.

InertialFlow is bad at finding highly balanced cuts.
Fortunately, for higher values of ε competitive cuts are
found. This explains why the computed contraction
orders are competitive. A significant advantage of
InertialFlow compared to Metis and KaHip is that a
higher maximum imbalance cannot increase the cut
size. Unfortunately, InertialFlow has its own set of
problems. It does not find the best cut just below the
allowed maximum imbalance. For example the good cut
through Europe with ε = 10.542% is not found when
allowing a maximum imbalance of 30%. A maximum
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max ε Achieved ε [%] Cut Size Running Time [s]

[%] F20 K M I F20 K M I F20 K M I

0 0.000 0.000 0.000 0.000 39 157 51 306 59.8 30.8 0.8 1.1
1 0.169 0.184 0.000 0.566 31 31 52 93 53.2 14.6 0.8 1.4
3 2.293 2.300 0.001 1.112 29 29 61 64 51.0 24.0 0.8 1.7
5 2.293 2.293 0.005 1.571 29 29 42 62 51.0 36.4 0.8 2.3

10 2.293 2.304 0.001 0.642 29 29 43 37 51.0 76.2 0.8 2.2
20 16.706 2.756 0.000 2.656 28 30 41 29 49.6 15.0 0.9 2.4
30 16.706 2.768 13.936 5.484 28 29 51 29 49.6 15.5 0.8 2.9
50 49.058 2.768 0.000 40.833 24 29 39 27 43.2 15.5 0.8 3.7
70 49.058 2.768 41.178 42.591 24 29 4 310 26 43.2 15.4 0.8 4.9
90 89.838 2.768 47.370 85.555 14 29 3 711 18 25.4 15.6 0.9 5.2

(a) California and Nevada

max ε Achieved ε [%] Cut Size Running Time [s]

[%] F20 K M I F20 K M I F20 K M I

0 0.000 0.000 0.000 0.000 240 716 369 1 180 1 390.3 369.1 3.3 4.3
1 0.132 0.998 0.000 0.089 220 245 360 391 1 342.9 80.2 3.3 7.9
3 0.132 0.457 0.000 0.008 220 227 372 319 1 342.9 112.5 3.1 10.2
5 4.894 0.464 0.000 0.857 213 227 369 276 1 319.0 158.3 3.3 12.3

10 9.330 0.043 0.000 0.375 180 228 375 241 1 181.5 338.1 3.1 16.8
20 10.542 3.139 0.000 0.132 162 250 375 220 1 089.5 75.5 3.1 25.6
30 10.542 3.139 0.017 7.384 162 250 369 203 1 089.5 75.4 3.1 34.9
50 44.386 3.139 33.336 10.542 155 250 9 881 162 1 047.8 75.3 3.2 47.5
70 66.655 3.139 41.178 44.386 86 250 14 375 155 591.6 75.5 3.2 82.8
90 84.199 3.139 83.087 84.257 13 250 28 17 92.8 75.4 3.3 17.1

(b) Central Europe

Table 2: Pareto-Set Experiments. We report the balance, the cut size and the computation time for various
partitioners and allowed maximum imbalance. For FlowCutter the computation time includes the time needed to
compute all less balanced cuts in the Pareto cut set.
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imbalance of 50% is necessary, i.e., the choice of 30%
vs 50% determines whether a 10.5% cut is found or
not. Unfortunately, a higher maximum imbalance is
not always better. Consider the two cuts with 29 edges
on California. They differ in the achieved balance, i.e.,
two cuts with the same size but a different balance exist.
InertialFlow does not find the variant with the better
balance, if the maximum allowed imbalance is too high.
Further, it fails to find the 29 edge cut with the best
balance which is only found by KaHip and FlowCutter.
Unfortunately, also KaHip can not find it reliably, as it
finds 4 different cuts with 29 edges and varying balances.

Only FlowCutter reliably finds the variant with the
best balance. On the two tested graphs in Table 2
FlowCutter even finds for every evaluated ε a smaller
or equally sized size than the best competitor2.

In [6] an optimal California cut for ε = 0% with 32
edges was computed. All tested algorithms are therefore
suboptimal as the best one finds a cut with 39 edges.
However, even a slight imbalance of 1% is enough for
FlowCutter and KaHip to find cuts with 31 edges. The
achieved 1% cuts can therefore be optimal.

Metis is the fastest, followed by InertialFlow, fol-
lowed by KaHip. Positioning FlowCutter in this list is
difficult, as it (a) is the only one to compute Pareto cut
set, enabling plots such as those in Figure 6, and (b)
even if one is only interested in a single cut, it honors
the maximum imbalance parameter much better.

7 Conclusion and Future Research
We introduced FlowCutter, a bisection algorithm that
optimizes balance and cut size in the Pareto sense.
We used it to compute contraction orders (also called
elimination or minimum fill-in orders) and have shown
that it beats the state of the art in terms of quality on
road graphs.

Future Research. FlowCutter needs two initial
nodes on separate sides of the cut. Currently these
are determined by random sampling. A better selection
strategy could decrease the number of samples needed.
Further investigating other piercing heuristics could also
be beneficial.

Acknowledgment. We thank Roland Glantz for
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