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Abstract

Demand and supply are both relevant for travel time in public transport. While it is obvious that the supply side in form
of the timetable corresponds directly to the travel time, the demand side influences the travel time only partially, but
in critical moments. During peak hours, when the demand reaches the capacity of the vehicles, the interaction between
demand and supply becomes important. Overcrowded vehicles, hindering passengers to catch their chosen route, lead
to longer travel times. Therefore, it is important to integrate the supply side of public transport into a travel demand
model.

The supply side of public transport has been integrated into the agent-based travel demand model mobiTopp. A
timetable has been implemented, which is used for two purposes. First, it serves as input for the Connection Scan
Algorithm, which is used by the agents to find the routes with earliest arrival time at their destinations. Second, it is
used for the movement of the public transport vehicles. The model also contains capacity constraints for vehicles, which,
when activated, result in a noticeable increase in travel time.

An advanced version of the Connection Scan Algorithm allows creating travel time estimates between zones as
matrices and profiles. Profiles, compared to matrices, contain for every departure time the corresponding arrival time,
while matrices contain mean travel times. Both provide a flexible trade-off between realism and runtime.
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1. Introduction

Travel demand models are essential for the assessment
of transport policy measures. They typically model the
demand side of travel quite well. However, modelling only
the demand side is not sufficient, as several of the net-
works’ quality of service attributes, which enter as at-
tributes into the demand model, like travel time, relia-
bility, or comfort, depend on the interaction of the supply
side and the demand side.

The supply side is typically only modelled for the mo-
torized traffic, since for motorized traffic an increased de-
mand results directly in an increased travel time. For pub-
lic transport, travel time is at first independent from the
demand and only depends on the supply side, i. e. the
timetable. However, during peak hours, when capacity is
reached, the situation changes.

An increasing demand firstly affects the comfort at-
tribute, when there are no longer enough seats for all pas-
sengers. As the vehicle gets more and more crowded, the
available space per passenger shrinks, creating more and
more discomfort. With an increasing number of passen-
gers standing in the aisles, entering and leaving the ve-
hicle slows down, possibly creating additional delays of

∗Corresponding author. Tel.: +49-721-608-47772 ; fax: +49-721-
608-46777.

Email address: lars.briem@kit.edu (Lars Briem)

the vehicle and as such reducing reliability. In case of an
overcrowded vehicle, it is even no longer possible for some
public transport users to board. They have to wait for the
next vehicle to arrive or even choose a new connection. So
in this case, the demand affects the travel time for public
transport.

Agent-based models offer a convenient way to integrate
the supply side of public transport. The paper describes
how the supply-side of public transport has been inte-
grated into mobiTopp. The results show, how taking the
capacity of public transport vehicles into account affects
the resulting travel time.

2. Related work

In recent years, the supply side of public transport has
been implemented in some agent-based models. One of
the first implementations was done for MATSim in 2010.
Rieser [1] implemented a basic model covering the timetable
of one day with several lines, stops and vehicles. Similar
work was done for SUMO [2] with the aim to integrate
intermodality into SUMO by implementing public trans-
port. POLARIS [3] currently does not have an implemen-
tation of the supply side of public transport. However, it
is planned to model public transport for emergency sce-
narios, where it is necessary to guide drivers and optimize
the routes to save as much lives as possible.

Preprint submitted to Future Generation Computer Systems December 8, 2017



Before agent-based models gained popularity in travel
demand modelling, public transport has already been mod-
elled in macroscopic models, for example in VISUM from
PTV AG. VISUM contains a transit assignment proce-
dure, which can be configured to take vehicle capacities
into account. VISUM can also be seen as one of the larger
public transport data models, covering many corner cases.
As it is used by public transport companies to plan their
operations, it also includes fare rules and costs for vehicles
to calculate the overall costs for all operators [4]. This
model and the model defined by the Association of German
Transport Companies (VDV) [5] can be seen as industry
standards for public transport data models.

Simulation experiments by Nuzzolo et al. [6] show that
capacity constraints have a great influence on transit as-
signment. In these experiments, a large number of passen-
gers change their departure time based on experience with
overcrowded vehicles at earlier days.

Using detailed demand data during transit assignment
implies to find routes for all agents. In the past, vari-
ous algorithms have been developed to find routes in pub-
lic transport networks. Schulz et al. [7] describe speed
up techniques for Dijkstra’s algorithm in public transport
networks. The experiments are based on train data of
a German railroad company and route search queries of a
journey planner. Delling et al. [8] take a step further by in-
troducing a new route search algorithm (RAPTOR), which
is not Dijkstra-based. RAPTOR works in rounds. Dur-
ing each round RAPTOR processes all transit lines. For
each transit line it updates the arrival times at all stops
that are reachable without transfers. After n rounds, the
current earliest arrival times represent the earliest arrival
with at most n − 1 transfers. Thus, RAPTOR automat-
ically calculates Pareto-optimal routes considering arrival
time and number of transfers. It works without prepro-
cessing and is therefore able to handle dynamic scenarios,
like search requests including real-time delays of vehicles.
Besides this, RAPTOR is faster than previous Dijkstra-
based approaches. Dibbelt et al. [9] introduce another
transit route search algorithm based on a list of connec-
tions sorted by departure and arrival times to speed up the
search requests further. They also introduce profile queries
to calculate alternatives for the user within a single route
search request. Profiles contain all earliest arrival times
for each departure time within a given range.

There also exist approaches to combine transit assign-
ment with profile based route search algorithms in an ef-
ficient manner. Grouping effects can be used to process
a transit assignment quite fast [10]. Instead of an earliest
arrival time as travel time, a perceived arrival time is used
to assign agents to their routes.

3. The mobiTopp model

mobiTopp [11, 12] is a travel demand model imple-
mented in Java. mobiTopp models every person, house-
hold and car of the planning area. Persons are modelled

as individual agents, who are grouped together into house-
holds. An agent, according to the definition by Bonabeau
[13], is an ‘autonomous decision-making entity’, which ‘in-
dividually assesses its situation and makes decisions on the
basis of a set of rules’.

mobiTopp is based on the principle of ‘simulating activ-
ity chains’ [14]: Each agent is assigned an activity program
for a whole week, which he executes during the simula-
tion. Executing the activity program, the agent chooses
locations for his activities and modes for the trips neces-
sary to reach these locations. The decision rules for these
choice situations, destination choice and mode choice, are
implemented as separate classes implementing a specific
interface. Different implementations exist, which are cur-
rently all based on Discrete Choice models, namely Logit
and Nested Logit models [15]. These models take sociode-
mographic attributes of the agents and network variables
like travel time and (monetary) travel cost into account.
Travel time and travel cost on a zone-to-zone basis is cal-
culated externally and provided in the form of matrices as
input to mobiTopp. Travel time can be differentiated by
time of day with time slices of multiples of an hour. So
peak-hours and off-peak periods can be distinguished.

mobiTopp currently supports the modes cycling, car as
a driver, car as a passenger, walking, and public transport
as default, additional modes like carsharing can be pro-
vided via extensions [16]. Traffic assignment is currently
handled externally using a macroscopic traffic assignment
tool. For this purpose mobiTopp’s output is aggregated to
origin-destination matrices, either over the whole day or
hourly, depending on the needed granularity for the macro-
scopic traffic assignment. Due to this , individual vehicles,
like cars and bikes, do not interact with each other directly.
Agents only interact with the cars of their household by
reserving the car while using it. Reserving cars is handled
in a first-come-first-served manner. The first agent need-
ing a car takes it. Reserved cars are not available to other
agents of the household for the mode car as a driver until
the car is returned at home.

mobiTopp consists of two stages: initialisation and sim-
ulation. Initialisation comprises population synthesis and
setting up the whole system considering long-term aspects
and decisions of persons and households. During this stage,
agents are assigned fixed locations for home, work and ed-
ucation activities. Agents are also equipped with private
cars and transit passes.

During the simulation stage, the travel behaviour of
agents is modelled, consisting of performing activities, mode
choice, destination choice, and making trips. All agents
are simulated simultaneously over the period of one week.
The behaviour of agents is encapsulated into states. Start-
ing at home, agents start in the state execute activity. An
agent remains in this state until the end of the activity.
He then switches to the state make trip. While switching,
the agent makes decisions for the next location and mode
to take. After the trip, the agent switches back to execute
activity. As soon as there are no more activities to pro-
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ceed, the agent stays at home in finished state for the rest
of the simulation. Besides making decisions during state
transitions, agents can execute actions on state changes,
too. E. g. after a trip in mode car as driver is finished and
the agent arrives at home, the agent has to return the car.
It is now possible for other members of the household to
use the car.

States as described here have different types. The
states execute activity and make trip are so-called dura-
tion states. An agent remains inside these states for a
longer time. All other states are instantaneous states. In
these states, the agent executes a specified behaviour and
switches to the next state without consuming time. All
states are described in Figure 1.

not yet
initialized

execute
activity

make trip

finished

Figure 1: State diagram of an agent in mobiTopp [17]. Dura-
tion states are marked with solid lines and instantaneous states are
marked with dashed lines. During the simulation, the agent alter-
nates between the states execute activity and make trip [18].

4. Public transport in mobiTopp

The behaviour of persons in public transport is quite
different from travelling by other modes like car or bike.
In public transport networks, persons can only board or
exit a vehicle at specific stations. Therefore, they need
the possibility to find a route from their current location
to their destination, maybe using several vehicles on fixed
routes instead of only one vehicle. Instead of developing
a new algorithm, we decided to choose one that fits our
needs. As the routing algorithm will be used heavily dur-
ing simulation, the speed of a single route search request
is quite important. The Connection Scan Algorithm [9] is
one of the fastest algorithms currently available [19] and
is hence selected.

4.1. Data model

The integration of public transport into the simula-
tion requires a timetable, which provides every informa-
tion needed by the route search algorithm. In addition,
this timetable can be used for scheduling vehicles over the
whole simulation period.

The definition of the data structures for the timetable
starts with a minimal model, which is extended as neces-
sary. The simplest model to find routes in a network con-
sists of stops and connections. A stop is a location where

agents can wait for, board, or exit a vehicle. A connection
is a direct link between two stops with a given departure
and arrival time. When transferring this into graph the-
ory, stops correspond to nodes and connections to edges.
Based on this, every graph-based algorithm, which is able
to deal with time dependent edges, can be used for routing.

To be able to take transfer times into account dur-
ing route search, the algorithm also needs information
when transfer times have to be considered. Transfer times
are needed when a passenger needs to change the vehicle.
Therefore, all connections served by the same vehicle are
grouped into a (vehicle) journey. A journey is the sequence
of connections served by a vehicle on its trip from its origin
to its final destination. Here, we combine the modelling of
a vehicle and a journey and add the capacity of the vehicle
directly to the journey.

Using only connections and stops is not enough to find
routes. Situations exist where agents have to transfer from
one stop to another. Therefore, transfers are modelled as
footpaths in the neighbourhood of each stop. A neigh-
bourhood contains all stops that are reachable from a stop
within a given period of time, e.g. 15 minutes. Neighbour-
hoods are explicitly not modelled as stations, since there
can be transfers between different stations. Stations, as
aggregates of stops, are also modelled, primarily to make
analysis easier.

In addition to the components needed for routing, the
model contains other elements for easier conversion from
other models and for visualisation. These are journey tem-
plates, transport systems and route points. Journey tem-
plates describe departure and arrival times at stops. Times
are given relative to the first stop. The departure time at
the first stop is always zero. Combining a journey template
with an absolute departure time, including a date, results
in a journey and the corresponding connections. Route
points represent the geographic route of a journey. They
are currently only needed for visualisation. A complete
overview of the model is given in Figure 2.

4.2. Route search

The Connection Scan Algorithm (CSA) is a fast tran-
sit route search algorithm linear in the number of connec-
tions. It takes as input the origin stop so, the destina-
tion stop sd, the departure time tdep, all connections C,
forming the timetable, and the footpaths F between each
stop and the stops in its neighbourhood. A connection
c = (cfrom, cto, cdep, carr, cjourney) belongs to a journey
cjourney and represents the basic movement of a vehicle
from a stop cfrom at departure time cdep to the following
stop cto with arrival time carr.

The algorithm itself consists of an initialisation and the
linear sweep over all connections. During the initialisation
all earliest arrival times τ are initialised with infinity, ex-
cept the earliest arrival times at the origin stop so and its
neighbours. The list of connections is sorted by increasing
departure time cdep and, as secondary sorting criterium,
increasing arrival time carr.
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Figure 2: Complete overview of the timetable in mobiTopp [18]

The second part of the algorithm is a linear sweep over
all connections, updating earliest arrival times τ at stops.
An arrival time is updated if a connection is reachable
and the arrival time of the current connection improves
the earliest arrival at the stop.

Reachable means that the earliest arrival time at the
origin stop of the connection τ(cfrom) is earlier or equal
to the departure time cdep, considering necessary change
times τchange time. Change times are only relevant, if the
journey of the connection cjourney has not already been
used.1 A connection improves the earliest arrival time at
the destination stop cto if the earliest arrival time at the
destination stop of the connection τ(cto) is later than the
arrival time of the connection carr. If the arrival time
is updated, all footpaths of this stop are used to check
and possibly update the earliest arrival time of all stops
in its neighbourhood [9, 20]. An update of the earliest
arrival time via footpath does not trigger an update of
other arrival times. This prevents routes purely made up
of footpaths. The algorithm is described in pseudocode in
Listing 1.

Dibbelt et al. [9] and Strasser and Wagner [20] explain
several techniques, which can reduce the runtime in real
applications. One of those is, limiting the number of pro-
cessed connections. Connections departing before the de-
parture time of the search request can be ignored. The
scan can also be stopped as soon as the next processed
connection departs after the earliest arrival at the desti-
nation cdep > τ(sd) since no connection can reduce the
earliest arrival time any further. Listing 1 does not con-
tain such optimizations to present the algorithm as clear
as possible.

1 In the original CSA publication [9] the term trip has been used
to denote the sequence of connections served by the same vehicle
during its journey from the first stop to the last stop. As trip typ-
ically refers to person trips in travel demand modelling, the term
journey will here be used where the original CSA publication uses
trip (see Figure 2).

4.3. Behaviour

The original behaviour of agents in mobiTopp, as shown
in Figure 1, is no longer sufficient for the detailed mod-
elling of public transport. Therefore, the make trip state
has been replaced with a more detailed behaviour, in case
the agent uses public transport. After finishing an activ-
ity, instead of switching to make trip an agent switches to
a system of states, which starts with the state use public
transport and finishes with the state leave public transport
(see Figure 3). Both states are used for analysis purpose.

On the transition from use public transport to find
route, the agent searches footpaths to the next stops near
him. In find route the agent uses those stops to search for
his next route and walks to the stop, where his first vehi-
cle departs, the origin of his route. Currently, the agent
always uses the route with the earliest arrival time at his
destination. After arriving at the origin stop, the agent
waits for the vehicle he wants to board. If it is available,
the agent tries to board it. While trying to board, the
vehicle accepts or rejects the boarding attempt, based on
the available remaining capacity. If the agent is allowed to
board the vehicle, he starts to ride the vehicle (ride vehi-
cle). Contrarily, if the agent is not allowed to board the
vehicle, he has to find a new route, which starts at his cur-
rent stop or one of its neighbouring stops. After a potential
walk to the origin of the new route, the agent waits for the
first vehicle serving the new route. As overcrowded vehi-
cles typically appear only during rush hour, there should
be no problem for agents to find another route, possibly
the next vehicle of the same line.

The agent stays in the vehicle until he arrives at his
destination stop or the next transfer stop. In both cases,
the agent leaves the vehicle. In case he reaches his desti-
nation stop, the agent walks to his destination and leaves
public transport. If not, the agent searches for the next ve-
hicle or walks to the stop where his next vehicle departs.
Wait for vehicle and ride vehicle are modelled as duration
states, like make trip in the original model.
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Algorithm 1 Connection Scan Algorithm, considering footpaths between stops, based on Dibbelt et al. [9].

1: function CSA(origin so, destination sd, departure tdep, connections C, footpaths F )
2: τ(·)←∞ . Initialise earliest arrival at all stops
3: τ(so)← tdep . Initialise arrival at origin
4: for all (so, s′) ∈ F do . Process all footpaths to neighbours of origin
5: τ(s′)← tdep + τfootpath(so, s′) . Initialise earliest arrival at neighbours of origin
6: end for
7: J ← ∅ . Initialise used journeys
8: sort C . Sort connections ascending by departure and arrival time
9:

10: for all c ∈ C do
11: if cdep ≥ τ(cfrom) + τchange time(cfrom) or cjourney ∈ J then . If connection is reachable or journey has been used
12: if carr < τ(cto) then . and arrival time is earlier
13: τ(cto)← carr . update earliest arrival time
14: add cjourney to J . Add journey of connection to used journeys
15: for all (cto, s′) ∈ F do . Relax all neighbours of current stop
16: if carr + τfootpath(cto, s′) < τ(s′) then
17: τ(s′)← carr + τfootpath(cto, s′) . Update earliest arrival time at neighbour
18: end if
19: end for
20: end if
21: end if
22: end for
23: return (so, sd, tdep, τ(sd))
24: end function

Use public
transport

Find
route

Wait for
vehicle

Try to
board

Ride
vehicle

Leave public
transport

Figure 3: Visualisation of state changes for a person using public transport. Wait for vehicle and ride vehicle are duration states (solid
border) in which an agent stays for a longer time. The other states are instantaneous (dashed border) and are used to encapsulate specific
behaviour [18].

5. Results for transit assignment

The implementation of public transport in mobiTopp,
which has been calibrated based on the data of a recent
household travel survey [21], has been successfully applied
to the region of Stuttgart. The region contains the city of
Stuttgart and the surrounding districts. The model of the
region consists of 1174 zones. All 2.7 million inhabitants
of the study area are simulated over a period of one week.

The input data used to construct the timetable has
been taken from a given macroscopic model [22]. The re-
sulting timetable contains 785 118 connections, 48 100 jour-
neys, and 24 different vehicle types, which serve 13 941
stops. The stops are combined to 11 410 stations. Between
stops, 48 236 bidirectional footpaths exist. The footpaths
specified in the macroscopic model have been extended by
a footpath search to find all stops within 15 minutes walk
time around each stop.

Using the presented model in mobiTopp results in about
1 million trips made by almost 620 000 agents. One simula-
tion took about 48 hours to simulate a single day of travel
demand on an Intel Core i7 3820 (3.6 GHz) using 24 GB of
RAM. A mobiTopp run without public transport assign-

ment takes for the same simulation period about 3 hours.
The increased runtime is mainly the result of the large
number of route search requests, including footpath search
to and from stops.

The new public transport implementation allows a more
realistic representation of public transport trips, heading
from one activity location to another. Figure 4 shows the
distribution of travel times in public transport, with and
without capacity constraints. Travel times are distributed
over a wide range, but a huge number of trips take less than
one hour and most of the trips are faster than one hour
and a half. The results show that the output of the simula-
tion run with the constrained capacity contains fewer trips
with shorter duration and more trips with longer duration
than the output of the simulation run with unconstrained
capacity. Constraining the capacity increases the mean
travel time from 51 minutes to 1 hour and 7 minutes.

The distribution over the day of the number of passen-
gers in public transport in Figure 5 contains three peaks.
The morning peak, which is the highest one, is nearly dou-
ble the size of the peak short after noon, while the peak
in the evening lies in between both peaks. The morning
peak is higher than the other peaks since school and work
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Figure 4: Distribution of travel times in public transport in mo-
biTopp, with and without capacity constraints. The travel time is
measured from the arrival of an agent at the first stop to the exit at
the last stop and includes waiting time at transfers.

start roughly at the same time in the morning, while the
return trips are split into the noon peak and the evening
peak.

The number of passengers in vehicles follows the curve
of public transport users quite similar, but at a lower am-
plitude. Both curves start at a low level and decline after
all peaks at the end of the day. In contrast, the number of
waiting passengers starts also at a low level, but remains
constant high at the end of the day, while the evening peak
is not as noticeable as on the others. The number of wait-
ing passengers is quite high compared to the number of
passengers in vehicles.

We assume that this is mainly an effect of the activity
plans. Activity plans are generated for agents with fixed
activity durations. Meaning, that as soon as the activity
has been started, the end time of an activity is fixed. As
a trip starts, as soon as an activity is finished, the time to
start the next trip is fixed, too. So the agent walks to the
next stop, as soon as his activity is finished without consid-
ering the departure time of his connection. Therefore, he
possibly has a considerable waiting time at the initial stop,
which results in a high number of waiting passengers. In
reality, however, it can be assumed that people are aware
of the timetable and adjust the start time of their walk
to the transit stop with the aim to minimize their waiting
time. Thus, the behaviour of mobiTopp’s agents should
be adjusted to be more realistic in this aspect. This could
be handled by some flexibility in the durations of the ac-
tivities.

The effect of the waiting time at the initial transit stop
is especially important for agents taking low frequency
lines, because the additional wait time increases the travel
time of the agent. Thus, the next activity and also the next
trip starts later. In the evening, when the frequencies of
lines start to decline, this could result in even longer wait
times and therefore more agents waiting at stops. Which
could be the cause for the high number of waiting passen-

gers shown in Figure 5. Thus, the detailed implementation
of public transport clearly shows the need for and leads the
way to further improvements of mobiTopp regarding more
flexible activity plans.

Besides the changes in the travel time distribution, en-
abling the capacity constraints, has another effect. Persons
rejected to board a vehicle increase the number of persons
waiting. However, the effect is small (see Figure 5). As
the maximum number of rejected passengers is only 1.4%
of the maximum number of agents in public transport, the
curve is shown in more detail in Figure 6. The highest
peak is during the morning rush hour, where we expect
the most crowded vehicles. During the rest of the day,
there are still some passengers being rejected, but not that
many. In the evening, the number of rejected passengers
starts to rise again. As there are also too many passengers
waiting in the evening, we assume that both effects are
interrelated. There is no obvious cause-effect relationship
between passenger waiting and passengers not allowed to
enter a vehicle, since one implies the other. We assume
therefore that both effects have a common cause, possibly
an overestimation of demand for public transport in the
evening.
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Figure 5: Distribution of persons per minute in public transport,
waiting for a vehicle, riding a vehicle and being rejected to enter a
vehicle.

6. Detailed travel times in mode and destination
choice

Integrating detailed public transport makes the model
more realistic, but also drastically increases runtime dur-
ing route choice. Using detailed route search for the calcu-
lation of travel times in destination and mode choice will
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further increase runtime, because in destination choice, the
travel time to many destinations is needed. Using single
route search requests will result in a huge overhead. As
there are a lot of duplicate route search requests between
stops, requests can either be cached or precalculated to
reduce the runtime. The CSA in its basic form without
performance extensions, explicitly without cancelling to
sweep connections, calculates all earliest arrival times to
all stops. These values could be cached and reused for
all agents starting at the same stop until the next vehicle
departs. Another option consists of introducing a pre-
processing step before the whole simulation. The arrival
times can be stored on disk and reloaded on later runs for
other populations. Thus, a recalculation is only needed
on timetable changes. Therefore, preprocessing is used in-
stead of caching.

Preprocessing is especially a viable option if earliest
arrival times can be calculated for several departure times
in parallel. An extension of the CSA algorithm, the profile
CSA Dibbelt et al. [9], allows this in a single sweep over all
connections. Instead of calculating a single arrival time per
stop, the profile CSA calculates all earliest arrival times for
a given range of departure times, a so-called profile.

A profile is a function that maps each departure time
to the earliest arrival time. Typically, this is calculated for
a given origin stop, destination stop and a period of the
departure time. A profile can also be calculated for the
whole period of the timetable, representing for each de-
parture in the timetable the earliest arrival time between
the two stops. As the CSA works in a one-to-all fashion,
it is possible to calculate profiles for a given origin stop to
all destination stops during a single sweep over all connec-
tions.

While the profiles remain exact in time and location,
the memory footprint is quite high. The required mem-
ory mainly depends on the number of connections in the
timetable. For each connection an entry in the profile
might be added. An entry consists of a departure and

an arrival time, each represented by a 4 Byte integer. As
the timetable used contains about 785.000 connections,
which results in approximately 6 MB per profile. Using
one profile for each of the 13941 stops will therefore result
in 81 GB of data. Taking footpaths into account, a con-
nection can be responsible for more than one profile entry.
However, experiments have shown, that a profile includ-
ing footpaths in our case needs between 4 MB and 5 MB,
which is slightly lower than the theoretical size.

The memory footprint can be further reduced, if it is
acceptable to ignore the exact location of an agent within
a zone and use only the information of the zone instead.
Then, travel times have to be calculated only between
zones. In order to calculate travel times between zones
a new stop is created for each zone’s centroid, called zone
stop. The zone stop is added to the neighbourhood of
each stop in the zone and vice versa. The time to walk be-
tween the zone stop and the other stops can either be zero
or the access time from the zone’s centroid to the stop.
The resulting travel time between zones already include
the footpath to the stop where the agent can enter public
transport.

The memory footprint of a single profile to a zone stop
remains the same, because the limiting factor is the num-
ber of connections. Instead of one profile for each of the
13941 stops, only one profile per zone is calculated. Given
the 1174 zones and one profile per zone, this results in ap-
proximately 6.87 GB of data. Thus, the profiles to zone
stops reduce the memory footprint to only 8.4% compared
to profiles to all stops.

Since profiles as data structure are more complex than
matrices, we expect that the gain in detail, when using pro-
files instead of matrices in mode and destination choice,
comes at the cost of increased runtime. In order to iso-
late the increase of runtime due to use of profiles in mode
and destination choice, from the increase in runtime due
to the detailed transit assignment implementation, we dis-
abled the detailed transit assignment implementation for
this comparison. The results show that by using profiles
instead of travel time matrices, the runtime increases by
a factor of two. This seems acceptable, especially com-
pared with the increase in runtime by the detailed transit
assignment.

Using the zone profiles, the memory usage is now man-
ageable. However, there are still cases were memory or
runtime limitations still do not allow to use exact depar-
ture times or where exact times are not needed. In this
case, the original implementation based on travel time ma-
trices can still be used. The matrices can either be pro-
vided externally as input or calculated based on profiles.

Forming travel time matrices based on profiles means,
aggregating the travel times of all routes between zones
in a given time slice. Therefore, one day is split up into
24 matrices, one for each hour. The estimated travel time
for each slice will be a mean of the routes between zones.
The granularity of one hour is sufficient to cover differ-
ences between peak hours and the rest of the day. As a
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result, travel time matrices no longer have to be calculated
externally. The memory consumption of a single matrix
is fixed, because for each zone combination there is one
matrix entry. As 1174 zones are used and travel times are
stored using floating point numbers of 4 byte length, the
memory consumption of a single matrix is 5.2 MB. Us-
ing 24 matrices will thus result in about 126 MB for all
matrices.

7. Conclusion and future work

We have shown how the supply side of public trans-
port can be integrated into an agent-based travel demand
model. The current implementation allows already analys-
ing the effect of vehicle capacities on the simulation results
and hence allows assessing the potential bias of models ne-
glecting vehicle capacities.

The presented approach follows the modular fashion
and basic principle of mobiTopp, using simple models where
possible, but providing the possibility to replace them with
more sophisticated models when needed. In this case, such
a simple model is the route choice behaviour. Currently,
the route with the earliest arrival is chosen. An improved
implementation could present a set of alternatives to the
agent, differing for example by arrival time, travel time,
and number of transfers. The agent could then choose from
this set of alternatives, using a Discrete Choice model.
Looking further, we can also integrate the agents experi-
ence about empty or crowded vehicles into his decision.

The modelling of precise departure times, instead of de-
parture time periods, stimulates the improvement of other
aspects of mobiTopp. One such aspect is flexibility of ac-
tivities in terms of start time and duration. In reality,
at least some persons using public transport can be ex-
pected to choose their activity times appropriate to de-
parture times of public transport vehicles. Thus, waiting
times of such persons can be reduced. In contrast, other
persons are not able to chose their times freely, because of
fixed working times.

The runtime of the current public transport implemen-
tation is a multiple of the runtime without it, mostly as
a result of the route search and the interaction between
agents and vehicles. Therefore, it is necessary to increase
the performance of the route search significantly. An im-
provement is using approximations where accuracy is not
indispensable. Depending on the runtime requirements ei-
ther approximations of only location (zone profiles) or also
time (matrices) can be used. mobiTopp is capable of han-
dling both and thus provides a flexible trade-off between
realism and runtime.

The presented work, integrating the supply side of pub-
lic transport into mobiTopp, including the capacity con-
straints on single vehicles, provides a solid foundation for
further extensions. The resulting implementation provides
the potential to account for discomfort in the mode choice
model, using the occupancy rate, and to integrate de-
lays resulting from prolonged boarding times due to over-

crowded vehicles. For these use cases, additional empirical
data is needed.
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Highlights
- An integration of the demand side of public transport into a travel demand 

model mobiTopp

- The integration describes the timetable model, the route search algorithm 
and the behaviour of agents

- Speed up techniques are used for destination and mode choice
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