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Abstract. This paper studies the problem of computing optimal jour-
neys in dynamic public transit networks. We introduce a novel algorith-
mic framework, called Connection Scan Algorithm (CSA), to compute
journeys. It organizes data as a single array of connections, which it scans
once per query. Despite its simplicity, our algorithm is very versatile. We
use it to solve earliest arrival and multi-criteria profile queries. More-
over, we extend it to handle the minimum expected arrival time (MEAT)
problem, which incorporates stochastic delays on the vehicles and asks
for a set of (alternative) journeys that in its entirety minimizes the
user’s expected arrival time at the destination. Our experiments on the
dense metropolitan network of London show that CSA computes MEAT
queries, our most complex scenario, in 272ms on average.

1 Introduction

Commercial public transit route planning systems are confronted with millions
of queries per hour [12], making fast algorithms a necessity. Preprocessing-based
techniques for computing point-to-point shortest paths have been very successful
on road networks [8,16], but their adaption to public transit networks [2,10] is
harder than expected [1,3,4]. The problem of computing “best” journeys comes
in several variants [14]: The simplest, called earliest arrival, takes a departure
time as input, and determines a journey that arrives at the destination as early
as possible. If further criteria, such as the number of transfers, are important,
one may consider multi-criteria optimization [7,9]. Finally, a profile query [6,7]
computes a set of optimal journeys that depart during a period of time (such
as a day). Traditionally, these problems have been solved by (variants of) Di-
jkstra’s algorithm on an appropriate graph model. Well-known examples are
the time-expanded and time-dependent models [6,10,14,15]. Recently, Delling et
al. [7] introduced RAPTOR. It solves the multi-criteria problem (arrival time and
number of transfers) by using dynamic programming directly on the timetable,
hence, no longer requires a graph or a priority queue.

In this work, we present the Connection Scan Algorithm (CSA). In its ba-
sic variant, it solves the earliest arrival problem, and is, like RAPTOR, not
graph-based. However, it is not centered around routes (as RAPTOR), but el-
ementary connections, which are the most basic building block of a timetable.
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CSA organizes them as one single array, which it then scans once (linearly)
to compute journeys to all stops of the network. The algorithm turns out
to be intriguingly simple with excellent spatial data locality. We also extend
CSA to handle multi-criteria profile queries: For a full time period, it com-
putes Pareto sets of journeys optimizing arrival time and number of transfers.

Fig. 1. Delay-robust itinerary from Karls-
ruhe to Aachen, Germany. A user should
try to take the leftmost path. If transfers
fail, alternatives are available.

Finally, we introduce the minimum ex-
pected arrival time problem (MEAT).
It incorporates uncertainty [5,9,11] by
considering stochastic delays on the ve-
hicles. Its goal is to compute a set of
journeys that minimizes the user’s ex-
pected arrival time (at the destination).
The output can be viewed as a decision
graph that provides all relevant alter-
native journeys at stops where trans-
fers might fail (see Fig. 1). We extend
CSA to handle these queries very effi-
ciently. Moreover, we do not make use
of heavy preprocessing, thus, enabling
dynamic scenarios including train cancellations, route changes, real-time delays,
etc. Our experiments on the dense metropolitan network of London validate our
approach. With CSA, we compute earliest arrival queries in under 2ms, and
multi-criteria profile queries for a full period in 221ms—faster than previous
algorithms. Moreover, we solve the most complex of our problems, MEAT, with
CSA in 272ms, fast enough for interactive applications.

This paper is organized as follows. Section 2 sets necessary notion, and Sec-
tion 3 presents our new algorithm. Section 4 extends it to multi-criteria profile
queries, while Section 5 considers MEAT. The experimental evaluation is avail-
able in Section 6, while Section 7 contains concluding remarks.

2 Preliminaries

Our public transit networks are defined in terms of their aperiodic timetable,
consisting of a set of stops, a set of connections, and a set of footpaths. A stop p
corresponds to a location in the network where a passenger can enter or exit a
vehicle (such as a bus stop or train station). Stops may have associated minimum
change times, denoted τch(p), which represent the minimum time required to
change vehicles at p. A connection c models a vehicle departing at a stop pdep(c)
at time τdep(c) and arriving at stop parr(c) at time τarr(c) without intermediate
halt. Connections that are subsequently operated by the same vehicle are grouped
into trips. We identify them by t(c). We denote by cnext the next connection (af-
ter c) of the same trip, if available. Trips can be further grouped into routes. A
route is a set of trips serving the exact same sequence of stops. For correctness, we
require trips of the same route to not overtake each other. Footpaths enable
walking transfers between nearby stops. Each footpath consists of two stops with
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an associated walking duration. Note that our footpaths are transitively closed. A
journey is a sequence of connections and footpaths. If two subsequent connections
are not part of the same trip, their arrival-departure time-difference must be at
least the minimum change time of the stop. Because our footpaths are transitively
closed, a journey never contains two subsequent footpaths.

In this paper we consider several well-known problems. In the earliest arrival
problem we are given a source stop ps, a target stop pt, and a departure time τ .
It asks for a journey that departs from ps no earlier than τ and arrives at pt
as early as possible. The profile problem asks for the set of all earliest arrival
journeys (from ps to pt) for every departure at ps. Besides arrival time, we
also consider the number of transfers as criterion: In multi-criteria scenarios
one is interested in computing a Pareto set of nondominated journeys. Here, a
journey J1 dominates a journey J2 if it is better with respect to every criterion.
Nondominated journeys are also called to be Pareto-optimal. Finally, the multi-
criteria profile problem requests a set of Pareto-optimal journeys (from ps to pt)
for all departures (at ps).

Usually, these problems have been solved by (variants of) Dijkstra’s algorithm
on an appropriate graph (representing the timetable). Most relevant to our work
is the realistic time-expanded model [15]. It expands time in the sense that it
creates a vertex for each event in the timetable (such as a vehicle departing or
arriving at a stop). Then, for every connection it inserts an arc between its re-
spective departure/arrival events, and also arcs that link subsequent connections.
Arcs are always weighted by the time difference of their linked events. Special
vertices may be added to respect minimum change times at stops. See [14,15]
for details.

3 Basic Connection Scan Algorithm

We now introduce the Connection Scan Algorithm (CSA), our approach to pub-
lic transit route planning. We describe it for the earliest arrival problem and
extend it to more complex scenarios in Sections 4 and 5. Our algorithm builds
on the following property of public transit networks: We call a connection c
reachable iff either the user is already traveling on a preceding connection of
the same trip t(c), or, he is standing at the connection’s departure stop pdep(c)
on time, i. e., before τdep(c). In fact, the time-expanded approach encodes this
property into a graph G, and then uses Dijkstra’s algorithm to obtain optimal
sequences of reachable connections [15]. Unfortunately, Dijkstra’s performance is
affected by many priority queue operations and suboptimal memory access pat-
terns. However, since our timetables are aperiodic, we observe that G is acyclic.
Thus, its arcs may be sorted topologically, e. g., by departure time. Dijkstra’s
algorithm on G, actually, scans (a subsequence of) them in this order.

Instead of building a graph, our algorithm assembles the timetable’s connec-
tions into a single array C, sorted by departure time. Given source stop ps and
departure time τ as input, it maintains for each stop p a label τ(p) representing
the earliest arrival time at p. Labels τ(·) are initialized to all-infinity, except τ(ps),
which is set to τ . The algorithm scans all connections c ∈ C (in order), testing
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if c can be reached. If this is the case and if τarr(c) improves τ(parr(c)), CSA
relaxes c by updating τ(parr(c)). After scanning the full array, the labels τ(·)
provably hold earliest arrival times for all stops.

Reachability, Minimum Change Times and Footpaths. To account for minimum
change times in our data, we check a connection c for reachability by testing
if τ(pdep(c)) + τch(pdep(c)) ≤ τdep(c) holds. Additionally, we track whether a
preceding connection of the same trip t(c) has been used. We, therefore, maintain
for each connection a flag, initially set to 0. Whenever the algorithm identifies a
connection c as reachable, it sets the flag of c’s subsequent connection cnext to 1.
Note that for networks with τch(·) = 0, trip tracking can be disabled and testing
reachability simplifies to τ(pdep(c)) ≤ τdep(c). To handle footpaths, each time
the algorithm relaxes a connection c, it scans all outgoing footpaths of parr(c).

Improvements. Clearly, connections departing before time τ can never be reached
and need not be scanned. We do a binary search on C to identify the first rele-
vant connection and start scanning from there (start criterion). If we are only
interested in one-to-one queries, the algorithm may stop as soon as it scans a
connection whose departure time exceeds the target stop’s earliest arrival time.
Also, as soon as one connection of a trip is reachable, so are all subsequent
connections of the same trip (and preceding connections of the trip have al-
ready been scanned). We may, therefore, keep a flag (indicating reachability)
per trip (instead of per connection). The algorithm then operates on these trip
flags instead. Note that we store all data sequentially in memory, making the
scan extremely cache-efficient. Only accesses to stop labels and trip flags are
potentially costly, but the number of stops and trips is small in comparison. To
further improve spatial locality, we subtract from each connection c ∈ C the
minimum change time of pdep(c) from τdep(c), but keep the original ordering
of C. Hence, CSA requires random access only on small parts of its data, which
mostly fits in low-level cache.

4 Extensions

CSA can be extended to profile queries. Given the timetable and a source stop ps,
a profile query computes for every stop p the set of all earliest arrival journeys
to p for every departure from ps, discarding dominated journeys. Such queries are
useful for preprocessing techniques, but also for users with flexible departure (or
arrival) time. We refer to the solution as a Pareto set of (τdep(ps), τarr(pt)) pairs.

In the following, we describe the reverse p–pt-profile query, which is needed
in Section 5. The forward search works analogously. Our algorithm, pCSA (p
for profile), scans once over the array of connections sorted by decreasing depar-
ture time. For every stop it keeps a partial (tentative) profile. It maintains the
property that the partial profiles are correct wrt. the subset of already scanned
connections. Every stop is initialized with an empty profile, except pt, which is
set to a constant identity-profile. When scanning a connection c, pCSA evalu-
ates the partial profile at the arrival stop parr(c): It asks for the earliest arrival
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time τ∗ at pt over all journeys departing at parr(c) at τarr(c) or later. It then
updates the profile at pdep(c) by potentially adding the pair (τdep(c), τ

∗) to it,
discarding newly dominated pairs, if necessary.

Maintaining Profiles. We describe two variants of maintaining profiles. The first,
pCSA-P (P for Pareto), stores them as arrays of Pareto-optimal (τdep, τarr) pairs
ordered by decreasing arrival (departure) time. Since new candidate entries are
generated in order of decreasing departure time, profile updates are a constant-
time operation: A candidate entry is either dominated by the last entry or is
appended to the array. Profile evaluation is implemented as a linear scan over
the array. This is quick in practice, since, compared to the timetable’s period,
connections usually have a short duration. The identity profile of pt is handled
as a special case. By slightly modifying the data structure, we obtain pCSA-
C (C for constant), for which evaluation is also possible in constant time: When
updating a profile, pCSA may append a candidate entry, even if it is domi-
nated. To ensure correctness, we set the candidate’s arrival time τ∗ to that of
the dominating entry. We then observe that, independent of the input’s source
or target stop, profile entries are always generated in the same order. Moreover,
each connection is associated with only two such entries, one at its departure
stop, relevant for updating, and, one at its arrival stop, relevant for evaluation.
For each connection, we precompute profile indices pointing to these two en-
tries, keeping them with the connection. Furthermore, its associated departure
time and stop may be dropped. Note that the space consumption for keeping
all (even suboptimal) profile entries is bounded by the number of connections.
Following [6], we also collect—in a quick preprocessing step—at each stop all
arrival times (in decreasing order). Then, instead of storing arrival times in the
profile entries, we keep arrival time indices. For our scenarios, these can be en-
coded using 16 (or fewer) bits. We call this technique time indexing, and the
corresponding algorithm pCSA-CT.

Minimum Change Times and Footpaths. We incorporate minimum change times
by evaluating the profile at a stop p for time τ at τ + τch(p). The trip bit is re-
placed by a trip arrival time, which represents the earliest arrival time at pt
when continuing with the trip. When scanning a connection c, we take the mini-
mum of the trip arrival time and the evaluated profile at parr(c). We update the
trip arrival time and the profile at pdep(c), accordingly. Footpaths are handled
as follows. Whenever a connection c is relaxed, we scan all incoming footpaths
at pdep(c). However, this no longer guarantees that profile entries are generated
by decreasing departure time, making profile updates a non-constant operation
for pCSA-P. Also, we can no longer precompute profile indices for pCSA-C.
Therefore, we expand footpaths into pseudoconnections in our data, as follows.
If pa and pb are connected by a footpath, we look at all reachable (via the
footpath) pairs of incoming connections cin at pa and outgoing connections cout
at pb. We create a new pseudoconnection (from pa to pb, departure time τarr(cin),
and arrival time τdep(cout)) iff there is no other pseudoconnection with a later or
equal departure time and an earlier or equal arrival time. Pseudoconnections can
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be identified by a simultaneous sweep over the incoming/outgoing connections
of pa and pb. During query, we handle footpaths toward pt as a special case of
the evaluation procedure. Footpaths at ps are handled by merging the profiles
of stops that are reachable by foot from ps.

One-to-One Queries. So far we described all-to-one profile queries, i. e., from all
stops to the target stop pt. If only the one-to-one profile between stops ps and pt
is of interest, a well-known pruning rule [6,14] can be applied to pCSA-P: Before
inserting a new profile entry at any stop, we check whether it is dominated by
the last entry in the profile at ps. If so, the current connection cannot possibly be
extended to a Pareto-optimal solution at the source, and, hence, can be pruned.
However, we still have to continue scanning the full connection array.

Multi-Criteria. CSA can be extended to compute multi-criteria profiles, opti-
mizing triples (τdep(ps), τarr(pt),# t) of departure time, arrival time and number
of taken trips. We call this variant mcpCSA-CT. We organize these triples hi-
erarchically by mapping arrival time τarr(pt) onto bags of (τdep(ps),# t) pairs.
Thus, we follow the general approach of pCSA-CT, but now maintain profiles
as (τarr(pt), bag) pairs. Evaluating a profile, thus, returns a bag. Where pCSA-CT
computes the minimum of two departure times, mcpCSA-CT merges two
bags, i. e., it computes their union and removes dominated entries. When it
scans a connection c, # t is increased by one for each entry of the evaluated bag,
unless c is a pseudoconncetion. It then merges the result with the bag of trip t(c),
and updates the profile at pdep(c), accordingly. Exploiting that, in practice, # t
only takes small integral values, we store bags as fixed-length vectors using # t
as index and departure times as values. Merging bags then corresponds to a
component-wise minimum, and increasing # t to shifting the vector’s values. A
variant, mcpCSA-CT-SSE, uses SIMD-instructions for these operations.

5 Minimum Expected Arrival Time

In this section we aim to provide delay-robust journeys that offer sensible backup
alternatives at every stop for the case that transfers fail. A tempting approach
might be to optimize reliability, introduced in [9], possibly together with other
criteria. While this produces journeys that have low failure probabilities on their
transfers, they are not necessarily robust in our sense: The set of reliable journeys
may already diverge at the source stop, and in general, no fall-back alternatives
are guaranteed at intermediate stops. On the other hand, on high-frequency
urban routes (such as subways) an unreliable transfer might not be a problem, if
the next feasible trip is just a few minutes away. To ensure that the user is never
left without guidance, we compute a subset of connections (rather than journeys)
such that at any point along the way, the user is provided with a good (in terms
of arrival time) option for continuing his journey toward the destination. We
propose to minimize the expected arrival time to achieve these goals.

We assume the following simple delay model: A connection c arrives at a ran-
dom time τRarr(c) but departs on time at τdep(c). All random arrival times are
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independent. No connection arrives earlier than its scheduled arrival time τarr(c).
To make computations meaningful, we assume an upper bound on all τRarr(c). We
further assume that walking is exact. Note that more complex stochastic mod-
els have been considered in [5,11], containing dependent random variables to
model delays. In this case, however, such models also propagate data errors (be-
sides delays), therefore, requiring precise delay data [5], which is hard to obtain
in practice. Also, even basic operations in [11] have super-quadratic running
time (in the number of connections), making the approach impractical, already
for medium-sized timetables.

For a given target stop pt, we define for every subset S of connections of the
timetable and for every connection c the expected arrival time τ̂ (S, c) at pt, re-
cursively. Let c1 . . . cn ⊆ S be the connections that the user can transfer to at c’s
arrival stop parr(c), ordered by departure time τdep(ci) (adjusted for footpaths
and minimum change times). We define

τ̂ (S, c) = min
{
τ̂ (S, cnext),

n+1∑
i=1

P
[
τdep(ci−1) ≤ τRarr(c) < τdep(ci)

] · τ̂(S, ci)
}

where τdep(c0) = τarr(c), τdep(cn+1) = ∞, τ̂ (S, cn+1) = ∞, and τ̂ (S, cnext) = ∞
if c is the last connection of trip t(c). The base of the recursion is defined by the
connections c arriving at pt, for which we define τ̂ (S, c) = E[τRarr(c)]. If the pos-
sibility of the user not reaching the target is non-zero, the expected arrival time
is trivially ∞. Since a connection is assumed to never arrive early, τ̂ (S, c) only
depends on connections departing later than c, which guarantees termination.
(This is where we require aperiodicity; in periodic networks infinite recursions
may occur.) In short, we compute the average over the expected arrival times
of each outgoing connection from the stop parr(c), weighted by the probability
of the user catching it. We define the minimum expected arrival time τ̂∗(c) of
a connection c as the minimum τ̂(S, c) over all subsets S. A subset S∗ mini-
mizes τ̂∗(c), if for every stop p the set of pair (τdep(c), τ̂ (S

∗, c)) induced by those
c ∈ S∗ that depart at p, does not include dominated connections. (A pair is
dominated, if, wrt. another pair, it departs earlier with higher expected arrival
time.) Note that removing a dominated pair’s connection improves τ̂ (·). Also, all
subsets with this property have the same τ̂ (·) and therefore S∗ is globally opti-
mal. At least one subset S∗ exists that is optimal for every c, because removing
dominated connections is independent of c.

To solve the minimum expected arrival time problem (MEAT), we compute
a set S∗, and output the reachable connections for the desired source stop and
departure time. Our algorithm is based directly on pCSA-P, with a different
meaning for its stop labels: Instead of mapping a departure time τdep to the
corresponding earliest arrival time τarr at pt, the algorithm now maps τdep to the
corresponding minimum expected arrival time τ̂∗ at pt. It does so by maintaining
an array of nondominated (τdep, τ̂∗) pairs. For a connection c, the label at
stop parr(c) is evaluated by a linear scan over that array: Following from the
recursive definition above, the minimum expected arrival time τ̂∗(c) is computed
by a weighted summation of each of the expected arrival times τ̂∗ collected during
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Table 1. Size figures for our timetables including figures of the time-dependent (TD),
colored time-dependent (TD-col), and time-expanded (TE) graph models [6,14,15]

Figures London Germany Europe

Stops 20 843 6 822 30 517
Trips 125 537 94 858 463 887
Connections 4 850 431 976 678 4 654 812
Routes 2 135 9 055 42 547
Footpaths 45 652 0 0
Expanded Footpaths 8 436 763 0 0

TD Vertices (Arcs) 97 k (272 k) 114 k (314 k) 527 k (1 448 k)
TD-col Vertices (Arcs) 21 k (71 k) 20 k (86 k) 79 k (339 k)
TE Vertices (Arcs) 9 338 k (34 990 k) 1 809 k (3 652 k) 8 778 k (17 557 k)

this scan multiplied with the success probability of the corresponding transfer
at parr(c). An optimization, called earliest arrival pruning, first runs an earliest
arrival query from the source stop and then only processes connections marked
reachable during that query. Note that, since during evaluation we scan over
several outgoing connections, pCSA-C is not applicable.

6 Experiments

We ran experiments pinned to one core of a dual 8-core Intel Xeon E5-2670
clocked at 2.6GHz, with 64GiB of DDR3-1600 RAM, 20MiB of L3 and 256KiB
of L2 cache. We compiled our C++ code using g++ 4.7.1 with flags -O3 -mavx.

We consider three realistic inputs whose sizes are reported in Table 1. They
are also used in [6,10,7], but we additionally filter them for (obvious) errors,
such as duplicated trips and connections with non-positive travel time. Our
main instance, London, is available at [13]. It includes tube (subway), bus, tram,
Dockland Light Rail (DLR) and is our only instance that also includes footpaths.
However, it has no minimum change times. The German and European networks
were kindly provided by HaCon [12]. Both have minimum change times. The
German network contains long-distance, regional, and commuter trains operated
by Deutsche Bahn during the winter schedule of 2001/02. The European network
contains long-distance trains, and is based on the winter schedule of 1996/97. To
account for overnight trains and long journeys, our (aperiodic) timetables cover
one (London), two (Germany), and three (Europe) consecutive days.

We ran for every experiment 10 000 queries with source and target stops cho-
sen uniformly at random. Departure times are chosen at random between 0:00
and 24:00 (of the first day). We report the running time and the number of label
comparisons, counting an SSE operation as a single comparison. Note that we
disregard comparisons in the priority queue implementation.

Earliest Arrival. In Table 2, we report performance figures for several algo-
rithms on the London instance. Besides CSA, we ran realistic time-expanded
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Table 2. Figures for the earliest arrival problem on our London instance. Indicators are:
• enabled, ◦ disabled, – not applicable. “Sta.” refers to the start criterion. “Trp.” indi-
cates the method of trip tracking: connection flag (◦), trip flag (•), none (×). “One.” in-
dicates one-to-one queries by either using the stop criterion or pruning.

#Scanned #Reachable #Relaxed #Scanned #L.Cmp. Time
Alg. St

a.
T
rp
.

O
ne
.

Arcs/Con. Arcs/Con. Arcs/Con. Footpaths p. Stop [ms]

TE – – ◦ 20 370 117 — 5739 046 — 977.3 876.2
TD – – ◦ 262 080 — 115 588 — 11.9 18.9
TD-col – – ◦ 68 183 — 21 294 — 3.2 7.3
CSA ◦ ◦ ◦ 4 850 431 2 576 355 11 090 11 500 356.9 16.8
CSA • ◦ ◦ 2 908 731 2 576 355 11 090 11 500 279.7 12.4
CSA • • ◦ 2 908 731 2 576 355 11 090 11 500 279.7 9.7

TE – – • 1 391 761 — 385 641 — 66.8 64.4
TD – – • 158 840 — 68 038 — 7.2 10.9
TD-col – – • 43 238 — 11 602 — 2.1 4.1
CSA • • • 420 263 126 983 5 574 7 005 26.6 2.0
CSA • × • 420 263 126 983 5 574 7 005 26.6 1.8

Dijkstra (TE) with two vertices per connection [15] and footpaths [14], realistic
time-dependent Dijkstra (TD), and time-dependent Dijkstra using the optimized
coloring model [6] (TD-col). For CSA, we distinguish between scanned, reachable
and relaxed connections. Algorithms in Table 2 are grouped into blocks.

The first considers one-to-all queries, and we see that basic CSA scans all
connections (4.8M), only half of which are reachable. On the other hand, TE
scans about half of the graph’s arcs (20M). Still, this is a factor of four more
entities due to the modeling overhead of the time-expanded graph. Regarding
query time, CSA greatly benefits from its simple data structures and lack of
priority queue: It is a factor of 52 faster than TE. Enabling the start criterion
reduces the number of scanned connections by 40%, which also helps query time.
Using trip bits increases spatial locality and further reduces query time to 9.7ms.
We observe that just a small fraction of scanned arcs/connections actually im-
prove stop labels. Only then CSA must consider footpaths. The second block
considers one-to-one queries. Here, the number of connections scanned by CSA
is significantly smaller; journeys in London rarely have long travel times. Since
our London instance does not have minimum change times, we may remove trip
tracking from the algorithm entirely. This yields the best query time of 1.8ms on
average. Although CSA compares significantly more labels, it outperforms Dijk-
stra in almost all cases (also see Table 4 for other inputs). Only for one-to-all
queries on London TD-col is slightly faster than CSA.

Profile and Multi-Criteria Queries. In Table 3 we report experiments for (multi-
criteria) profile queries on London. Other instances are available in Table 4.
We compare CSA to SPCS-col [6] (an extension of TD-col to profile queries)
and rRAPTOR [7] (an extension of RAPTOR to multi-criteria profile queries).
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Table 3. Figures for the (multi-criteria) profile problem on London. “#Tr.” is the max.
number of trips considered. “Arr.” indicates minimizing arrival time, “Tran.” transfers.
“Prof.” indicates profile queries. “#Jn.” is the number of Pareto-optimal journeys.

#L.Cmp. Time
Algorithm #

T
r.

A
rr
.

T
ra
n.

P
ro
f.

O
ne
.

# Jn. p. Stop [ms]

SPCS-col – • ◦ • ◦ 98.2 477.7 1 262
SPCS-col – • ◦ • • 98.2 372.5 843
pCSA-P – • ◦ • ◦ 98.2 567.6 177
pCSA-P – • ◦ • • 98.2 436.9 161
pCSA-C – • ◦ • – 98.2 1 912.5 134
pCSA-CT – • ◦ • – 98.2 1 912.5 104

rRAPTOR 8 • • • ◦ 203.4 1 812.5 1 179
rRAPTOR 8 • • • • 203.4 1 579.6 878
rRAPTOR 16 • • • • 206.4 1 634.0 922
mcpCSA-CT 8 • • • – 203.4 15 299.8 255
mcpCSA-CT-SSE 8 • • • – 203.4 1 912.5 221
mcpCSA-CT-SSE 16 • • • – 206.4 3 824.9 466

Note that in [7] rRAPTOR is evaluated on two-hours range queries, whereas we
compute full profile queries. A first observation is that, regarding query time,
one-to-all SPCS is outperformed by all other algorithms, even those which ad-
ditionally minimize the number of transfers. Similarly to our previous experi-
ment, CSA generally does more work than the competing algorithms, but is,
again, faster due to its cache-friendlier memory access patterns. We also observe
that one-to-all pCSA-C is slightly faster than pCSA-P, even with target pruning
enabled, although it scans 2.7 times as many connections because of expanded
footpaths. Note, however, that the figure for pCSA-C does not include the post-
processing that removes dominated journeys. Time indexing further accelerates
pCSA-C, indicating that the algorithm is, indeed, memory-bound. Regarding
multi-criteria profile queries, doubling the number of considered trips also dou-
bles both CSA’s label comparisons and its running time. For rRAPTOR the dif-
ference is less (only 12%)—most work is spent in the first eight rounds. Indeed,
journeys with more than eight trips are very rare. This justifies mcpCSA-CT-
SSE with eight trips, which is our fastest algorithm (221ms on average). Note
that using an AVX2 processor (announced for June 2013), one will be able to
process 256bit-vectors in a single instruction. We, therefore, expect mcpCSA-
CT-SSE to perform better for greater numbers of trips in the future.

Minimum Expected Arrival Time. In Table 5 we present figures for the MEAT
problem on all instances. Besides running time, we also report output complex-
ity in terms of number of stops and arcs of the decision graph (see Fig. 1 for
an example). Real world delay data was not available to us. Hence, we fol-
low Disser et al. [9] and assume that the probability of a train being delayed
by t minutes (or less) is 0.99− 0.4 · exp(−t/8). After 30min (10min on London)
we set this value to 1. Moreover, we also evaluate performance when discretizing
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Table 4. Evaluating other instances. Start criterion and trip flags are always used.

Germany Europe
#L.Cmp. Time #L.Cmp. Time

Algorithm #
T
r.

A
rr
.

T
ra
n.

P
ro
f.

O
ne
.

# Jn. p. Stop [ms] # Jn. p. Stop [ms]

TE – • ◦ ◦ ◦ 1.0 317.0 117.1 0.9 288.6 624.1
TD-col – • ◦ ◦ ◦ 1.0 11.9 3.5 0.9 10.0 21.6
CSA – • ◦ ◦ ◦ 1.0 228.7 3.4 0.9 209.5 19.5
TE – • ◦ ◦ • 1.0 29.8 11.7 0.9 56.3 129.9
TD-col – • ◦ ◦ • 1.0 6.8 2.0 0.9 5.3 11.5
CSA – • ◦ ◦ • 1.0 40.8 0.8 0.9 74.2 8.3

pCSA-CT – • ◦ • – 20.2 429.5 4.9 11.4 457.6 46.2

rRAPTOR 8 • • • ◦ 29.4 752.1 161.3 17.2 377.5 421.8
rRAPTOR 8 • • • • 29.4 640.1 123.0 17.2 340.8 344.9
mcpCSA-CT-SSE 8 • • • – 29.4 429.5 17.9 17.2 457.6 98.2

Table 5. Evaluating pCSA-P for the MEAT problem on all instances

Max. Delay Decision Graph All-To-One One-To-One One-To-One
Network [min] #Stops #Arcs Time [ms] Time [ms] Dis. Time [ms]

Germany 30 8 19 68.1 31.0 24.6
Europe 30 20 46 205.0 169.0 112.0
London 10 2 724 30 243 668.0 491.0 272.0

the probability function at 60 equidistant points [9]. We run pCSA-P on 10 000
random queries and evaluate both the all-to-one and one-to-one (with earliest
arrival pruning enabled) setting. Regarding output complexity, on the German
and European networks the resulting decision graphs are sufficiently small to be
presented to the user. They consist of 8 stops and 19 arcs on average (Germany),
roughly doubling on Europe. However, for London these figures are impracti-
cally large, increasing to 2 724 (stops) and 30 243 (arcs). Note that in a dense
metropolitan network (such as London), trips operate much more frequently,
therefore, many more alternate (and fall-back) journeys exist. These must all be
captured by the output. Regarding query time, pCSA-P computes solutions in
under 205ms on Germany and Europe for all scenarios. On London, all-to-one
queries take 668ms, whereas one-to-one queries can be computed in 272ms time.
Note that all values are still practical for interactive scenarios.

7 Final Remarks

In this work, we introduced the Connection Scan framework of algorithms (CSA)
for several public transit route planning problems. One of its strengths is the
conceptual simplicity, allowing easy implementations. Yet, it is sufficiently flexi-
ble to handle complex scenarios, such as multi-criteria profile queries. Moreover,
we introduced the MEAT problem which considers stochastic delays and asks for
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a robust set of journeys minimizing (in its entirety) the user’s expected arrival
time. We extended CSA to MEAT queries in a sound manner. Our experiments
on the metropolitan network of London revealed that CSA is faster than exist-
ing approaches, and computes solutions to the MEAT problem surprisingly fast
in 272ms time. All scenarios considered are fast enough for interactive applica-
tions. For future work, we are interested in investigating network decomposition
techniques to make CSA more scalable, as well as more realistic delay models.
Also, since CSA does not use a priority queue, parallel extensions seem promis-
ing. Regarding multimodal scenarios, we like to combine CSA with existing tech-
niques developed for road networks.
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